
DECISIONAD-A266 38
CONSORTIUM, INC.

STESTING AND EVALUATING C31 SYSTEMS
THAT EMPLOY Al

(CLIN 0001)

VOLUME 1: HANDBOOK FOR TESTING EXPERT SYSTEMS

Leonard Adelman, Jacob W. Ulvila, and Paul E. Lehner

Decision Science Consortium, Inc.
1895 Preston White Drive, Suite 300

Reston, Virginia 22091 ' ."ý.C

January 1991 30tA'D D 9

Final Report S
Period of Performance: 16 September 1988 - 15 September 1990

Contract Number: DAEA1S.88-C-0028
PR&C Number: W61DD3-8057-0601

AAP Number: EPG 8048

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Prepared for:
U.S. Army Electronic Proving Ground

ATTN: STEEP-ET-S (Mr. Robert J. Harder)
Fort Huachuca, Arizona 85613-7110

The views, opinions, and/or findings contained in this report are those of the authors and should not be
construed as an official Department of the Army position, policy, or decision unless so designated by other
documentation.

* mTECHNICA REPORT "909 93-14576

UNCLASSIFIED
SEURITYu' MASSIFIATION oF TVIS PAGE

REPORT DOCUMENTATION PAGE _I0A8io, 070"1-088
REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY I DIS T
R,&UTIO%/AVAILABJLITY O RkePORT

2b. DECLA SIFICATION/DOWNGRADING SCHEDULE Approved .L { fi t. cI i.i • iA-riut LJ

i__unlimited
4. PERFORMING ORGA1NIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

90-9

6.. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Decision Science Consortium, (i ppicabl*) US Army Electronic Proving Ground
Inc. I STEEP-ET-S

6k. ADDRESS (City, State, and ZIP Code) 1b. AOORESS(City, State, and ZIP Code)

1895 Preston White Drive, Suite 300 Ft. Huachuca, Arizona 85613-7110
Reston, Virginia 22091

8e. NAME OF FUNDING'/SPONSORING B, OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICA'TION NUMBER
ORGANIZATION (If applicable)

STEEP-ET-S DAEA-18-88-C-0028
Sc. ADDRESS (City, State,. and ZIP Cod•) 10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT . TASK WORK UNIT
ELEMENT NO. NO- NO jACCESSION NO

11. TITLE (Include Security Clasfication) TESTING AND EVALUATING C3 1 SYSTEMS THAT EMPLOY Al --

VOLUME 1: HANDBOOK FOR TESTING EXPERT SYSTEMS

PERSONAL AUTHOR(S)
Leonard Adelman, Jacob W. Ulvila, and Paul E. Lehner

13s. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Aontt, Day) 15. PAGE COUNT
Final Technical I FROM Sep 88 TO Sep 0 1991 January 31 334

16. SUPPLEMENTARY NOTATION The views, opinions, and/or findings ccntained in this report are
those of the authors and should not be construed as an official Department of the Army
positionp policyv or decision unless so designated *y other documentatin. .

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverie if necessary and ident•y by block number)-FIELD GROUP "SUB-GROUP
Expert Systems, Testing, Knowledge-Based Systems, Artificial
Intelligence, Multiattribute Utility

19. ABSTRACT (Continue on reverse if necessary and identity by block number)

This is the first and main volume of a five-volume report on this project to develop
methods for testing expert systems. This volume provides a software tester with a
comprehensive method for testing expert systems and knowledge-based systems. It contains
chapters on an overview of expert system testing, foundations for testing expert systems,
subjective methods, technical methods, empirical methods, an integrative framework for
testing and evaluation, the relationship between this framework and other approaches to
testing, and future directions. It also contains a detailed questionnaire that can
be used to elicit subjective information from subjects and an extensive list of references.

0O. DISTRIBUTION IAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
ZUNC LASSIFIEDWUNLIMITED [SAME AS RPT C3 DTIC USERS Unclassified

2a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 2c. OFFICE SYMBOL
Mr. Robert J. Harder (602) 538-2090 STEEP-ET-S

OD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

i-i

PREFACE

This report describes the results of a research project funded under the

Small Business Innovative Research (SBIR) program by the U.S. Army Electronic

Proving Ground. Phase 1 of this project was conducted from September 1986 to

March 1987. It resulted in a report and a prototype software program, TESTER.

Phase 2 was conducted from September 1988 to September 1990 and resulted in a

five-volume report and a software prototype, TESTERC. Volume 1 of the report

Handbook for Testing Expert Systems, provides a comprehensive approach to

testing expert systems. Volume 2, Compendium of Lessons Learned from Testing

Al Systems In the Army, provides the results of a survey of software testers

and offers suggestions for improving the practice of testing Al software.

Volume 3, A Guide to Developing Small Expert Systems, provides a step-by-step

guide for a beginner. Volume 3 was also delivered in a hypertext version.

Volume 4, Published Articles, contains copies of the six published articles

developed in this project. Volume 5, User's Manual for TESTERC, is a user's

manual for the prototype software that implements the multiattribute utility

analysis (MAUA) framework for testing and evaluating expert systems described

in Volume 1.

Volume 1 is intended as a handbook that can be used by a tester inter-

ested in testing a knowledge-based system or an expert system. The reader

interested in an overview of our methods may wish to skim Chapter 7, "Pulling

It All Together," first. He or she may then wish to review the attributes in

the MAUA hierarchy presented in the latter half of Chapter 3, "Proposed MAUA

Framework for Testing and Evaluating Expert Systems." A detailed example of

the method is given in Volume 5, User's Manual for TESTERC. After this

introductory review, a tester should read Chapters 1 and 2 to gain an overview

of the expert system testing methods. The reader may then wish to pick and

choose among the specific methods described in Chapters 3, 4, 5, and 6 to gain

more in-depth knowledge of the techniques needed for the particular test.

Chapter 8 contrasts the methods of this Handbook with other approaches to

software testing and evaluation. Finally, Chapter 9 describes areas where

further research and development are needed.

iii

As with many monographs on software, this one mentions certain products.

EXSYS is a trademark of Exsys, Inc. CLIPS is a product of NASA. Other

product names used in this document may be trademarks of their respective

companies.

0

0

iv

CONTENTS

Page

CHAPTER 1: TESTING AND EVALUATING EXPERT SYSTEMS:
AN OVERVIEW AND ILLUSTRATION 1-1

A DECISION-MAKING PERSPECTIVE AND PARADIGM 1-7
A MULTI FACETED TEST AND EVALUATION APPROACH 1-14
THE CASE STUDY 1-20

Technical Evaluation 1-22
Empirical Evaluation 1-24
Subjective Evaluation 1-30

CHAPTER SUMMARY 1-34

2: LAYING THE FOUNDATION: TEST AND EVALUATION
CRITERIA, THE EXPERT SYSTEM DEVELOPMENT CYCLE,
AND AN OVERVIEW OF SUBJECTIVE, TECHNICAL, AND
EMPIRICAL TEST AND EVALUATION METHODS 2-1

TEST AND EVALUATION CRITERIA 2-4
THE EXPERT SYSTEM DEVELOPMENT APPROACH 2-8
SUBJECTIVE, TECHNICAL, AND EMPIRICAL TEST AND
EVALUATION METHODS: AN OVERVIEW 2-24

Subjective Test and Evaluation Methods 2-24
Multiattribute Utility Assessment 2-24
The Dollar-Equivalent Technique 2-26
Decision Tree Analysis 2-26
Other Subjective Test and Evaluation
Methods 2-27
Discussion 2-27

Technical Test and Evaluation Methods 2-30
Logical Consistency and Completeness 2-30
Functional Completeness and Predictive
Accuracy 2-31
Service Requirements 2-35
Discussion 2-35

Empirical Test and Evaluation Methods 2-36
Experiments 2-36
Quasi-Experiments 2-40

CHAPTER SUMMARY 2-41

3: MORE ABOUT SUBJECTIVE TEST AND EVALUATION METHODS . . . 3-1

MULTIATTRIBUTE UTILITY ASSESSMENT (MAUA). 3-3
COST-BENEFIT ANALYSIS AND THE DOLLAR-EQUIVALENT
TECHNIQUE 3-13
DECISION TREE ANALYSIS 3-16
MAUA-BASED COST-BENEFIT ANALYSIS 3-22

v

CONTENTS (Continued)

Pags..

CONSTRUCTING QUESTIONNAIRES TO ELICIT OPINIONS . 3-26
Characteristics of the DART Questionnaire 3-2.
Reliability and Validity of the DART
Questionnaire 3-31
Assessing the Reliability of the DART
Questionnaire 3-32
Assessing the Validity of the DART
Questionnaire 3-34
Other Types of Questionnaires 1.3-35
Summary 3-40

PROPOSED MAUA FRAMEWORK(FOR TESTING AND EVALUATING
EXPERT SYSTEMS 3-41

Framework and Attribute Definitions 3-43
Measurement Scales for Attributes 3-49
Judgmental Performance and the Rest of
Usability 3-56
Using the Hierarchy for Testing 3-56

CHAPTER SUMMARY 3-59

4: MORE ABOUT TECHNICAL TEST AND EVALUATION METHODS . . . 4-1

TESTING AND EVALUATING THE KNOWLEDGE BASE 4-1
Methods for Evaluating Logical Consistency
and Completeness 4-2

Static Testing for Categorical Expert
Systems 4-2
Static Testing for Systems with Reason
Maintenance 4-8
Static Testing for Uncertain Inference
Systems 4-9

A Dynamic Testing Approach: Validator . 4-11
Summary 4-13

Methods for Evaluating Functional
Completeness and Predictive Accuracy 4-13

Examining the Knowledge Base 4-16
Using Test Cases 4-17
Summary 4-21

INFERENCE ENGINE 4-21
SERVICE REQUIREMENTS 4-22
CHAPTER SUMMARY 4-28

5: MORE ON ASSESSING THE PREDICTIVE ACCURACY OF AN
EXPERT SYSTEM'S KNOWLEDGE BASE 5 -

CASE 1: HYPOTHESIS TESTING WITH BELIEF VALUES 5-1
Possible Performance Measures 5-
Estimating PE and Pu 5-6

vi

CONTENTS (Contini.upd)

Page

Using PE and PU to Determine Sample Size 5-7

An Example 5-8
Reconsidering the Assumptions 5-13

Multiple Hypotheses 5-13
Belief Values that do not Sum to One 5-14
Unequal Variance 5-14
Nonsymmetric Thresholds 5-15
Distributions are Normal 5-15

Some Non-Parametric Procedures 5-16
Estimating d* 5-17

CASE 2: HYPOTHESIS TESTING WITHOUT BELIEF VALUES . 5-18
CASE 3: ASSESSING THE ACCURACY OF QUANTITATIVE

PREDICTIONS 5-20
CASE 4: COMPARISON TO EXPERT JUDGMENT 5-22
SOME OTHER APPROACHES 5-25

6: MORE ABOUT EMPIRICAL TEST AND EVALUATION METHODS . . . 6-1

EXPERIMENTS 6-3
Reliability and Validity Broadly Defined 6-8
Internal Validity 6-8
Construct Validity 6-12
Statistical Conclusion Validity 6-14
External Validity 6-18
Field Experiments 6-21

CASE STUDIES AND QUASI-EXPERIMENTS 6-22
Pre-Experimental Designs 6-23
Appropriate Case Studies 6-25
Time-Series Designs 6-29
Nonequivalent Control Group Design 6-33

CHAPTER SUMMARY 6-37

7: PULLING IT TOGETHER 7-1

WEIGHTING DIFFERENT PARTS OF THE HIERARCHY 7-1
Mission Critical System 7-5
Automatic System 7-6
Expertise of the User 7-6

Assist an Expert 7-6
Assist a Novice 7-7

Widely Distributed 7-8
PERFORMING THE TESTS 7-9

Knowledge-Base Structure 7-9
Factors Affecting the Ability to Test 7-9
Testing for Logical Consistency 7-9
Testing for Logical Completeness 7-10

vii

CONTENTS (Cont inued)

Page

Knowl~edge-Base Content7-11
Factors Affecting the Ability to Test . 7-11
Testing for Functional Completeness .' 7-12
Testing for Predictive Accuracy. 7-13

Inference Engine 7-14

"Service
Factors Affecting the Ability to Test .. 7-15
Testing for Service Requirements 7-15

Performance.....................................7-15
Factors Affecting the Ability to Test ,.7-15
Testing for Performance. 7-16

Usability.......................................7-16
Factors Affecting the Ability to Test .. 7-16
Testing for Usability. 7-17

CHAPTER SUMMARY. 7-18

8: OTHER APPROACHES TO TEST AND EVALUATION8-1

VERIFICATION VERSUS VALIDATION. 8-1
STATIC VERSUS DYNAMIC TESTING 8-3
SOFTWARE QUALITY FACTORS................................8-9
CHAPTER SUMMARY. 8-17

9: FUTURE DIRECTIONS 9-1

TEST TECHNOLOGY PROGRAM 9-1
SPECIFIC ACTIONS..9-3
CHAPTER SUMMARY ... 9-5

REFERENCES...R-1

APPENDIX: QUESTIONNAIRES......................................A-l

vtiii

CONTENTS (Continued)

Page

TABLES

TABLE 1-i: Hierarchy of Measures of Effectiveness (MOEs) and
Number of Questions Assessing Bottom-Level MOEs 1-16

1-2: The Experts' Quality Ratings for their Solutions
with and without DART 1-28

1-3: Experts' Mean Quality Ratings and Sample Size for
the 2 (DSS) x 2 (Scenario) for the Experts'
Solutions 1-29

1-4: Experts' Subjective Evaluation Scores for DART
on each MOE in the MAUA Hierarchy 1-35

2-1: A MAlU Framework for Integrating Test daad
Evaluation Criteria 2-5

3-1: A Simple Payoff Matrix 3-18
5-1: Sample Test Results 5-10
5-2: Tradeoff between P0 and PE in Sample Problem 5-11
5-3: Test Results for all Nodes in Sample Problem

(max PE set at .05) 5-12
5-4: Sample Data for Expert Syste~m Predicting

Quantitative Values 5-20
5-5: Twenty Judgments from Three Experts aid Expert

Systems 5-23
5-6: Intercorrelation of Columns in Table 5-5 5-24
6-1: Some Summary Comments about Experiments 6-6

6-2: Definitions of (Selected) Threats to Internal
Validity 6-11

6-3: A Summary of Issues Involved in the Discussion
of Statistical Conclusion Validity 6-17

6-4: Definitions of Empirical Evaluation Methods 6-37
6-5: Definitions of Reliability and Validity 6-38
8-1: Linking Software Quality Subfactors to

Attributes in the Hfirarchy 8-4

FIGURES

FIGURE 1-1: The SHOR Paradigm 1-9
1-2: The Three Interfaces to Monitor and Evaluate

when Developing Expert Systems 1-17
1-3: DART Functional Overview 1-23
2-1: Hice et al.'s System Development Methodology 2-9
2-2: Cholawsky's (1988) Representation of the

Traditional Expert System Development Methodology . . 2-12

2-3: Harmon et al.'s (1988) Representation of the
Traditional Expert System Development Methodology . . 2-13

2-4: Cholawsky's (1988) "New" Approach to Expert S'stem
Development 2-15

ix

CONTENTS (Continued)

Page

FIGURES

FIGURE 2-5: Weitzel and Kerschberg's (1989) Representation
of the "Knowledge-Base System Development
Methodology Flow" 2-16

2-6: Rook and Croghan's (1989) "Knowledge Acquisition
Activity Matrix" 2-18

2-7: Andriole's Nine-Step Prototyping Design Blueprint . . 2-19
2-8: Wolfgram et al.'s (1987) "Stages of Expert System

Development 2-20
2-9: Modification of Wolfgram et al.'s Representation

in Order to Emphasize Test and Evaluation 2-22
3-1: Some Possible Shape Utility Functions 3-7

3-2: Hypothetical Utility Function for Expert System
Set-Up Time 3-8

3-3: Possible Discrete Utility Functions 3-9
3-4: A Pictorial Representation of the Relative

Importance of Different Utility Scales 3-10
3-5: A Highly Simplified Probability Tree for

Illustrating the Uncertainty in Funding for
an Expert System throughout the Duration of
the Development Process 3-19

3-6: A Slightly Expanded Probability Tree for the
Hypothetical Funding Illustration 3-20

3-7: A Hypothetical Efficient F-ontier 3-26
3-8: An Example of a Questionnaire for Obtaining

Utility Scores 3-38
3-9: A MAU Framework for Testing and Evaluating

Expert Systems 3-44
4-1: The Flow Graph for a Fragment of a Fictitious

Rule Base for Diabetes Diagnosis 4-4
4-2: An Incident Matrix Representing the Flow Graph

for the Fictitious Diabetes Diagnosis Rule Bas. 4-4

4-3: A Truth Table Representing a Fragment of the
Fictitious Rule Base for Diabetes Diagnosis 4-5

5-I: Hypothetical Distribution of Perceived Signal
Strength in Signal Detection Theory 5-2

5-2: Distributions of Belief Value, bel(Hl) for
Hl-true vs. H2-false 5-3

5-3: Samwle Inference Network 5-9

5-4: Sample Data for Calculating d* 5-18
5-5: Plot of Predictions, Outcomes, and Regression

Line for Table 5-4 5-21
5-6: Comparison of Expert System and Average Expert

Judgment 5-2'.
6-I: Evaluation Criteria being Assessed by Empirical

Test and Evaluation Method 6-4
7-1: A MAU Framework for Testing and Evaluating

Expert Systems 7-2
xg

XI

CONTENTS (Continued)

Page

FIGURES

FIGURE 8-1: Test and Evaluation Criteria Addressing
Verification (Shaded) versus Validation
(Unshaded) Methods 8-2

8-2: Test and Eveluation Criteria Typically
Assessed by Static Testing Methods (Shaded)
and Dynamic Testing Methods (Unshaded) 8-10

8-3: Software Quality Factors 8-11
8-4: Factor to Subfactor Decomposition in

Matrix Form 8-13
8-5: Software Quality Subfactors 8-14
8-6: fle Software Quality Subfactors Addressed

by each Evaluation Attribute in the Hierarchy 8-16
A-1: Relationship between the Questionnaire and

the MAU Framework for Testing and Evaluating
Expert Systems A-2

xi

CHAPTER 1:

TESTING AND EVALUATING EXPERT SYSTEMS:
AN OVERVIEW AND ILLUSTRATION

The test and evaluation of expert systems is becoming increasingly

important, for expert systems are moving out of the laboratory and into

operational use. How good are these systems? Do they do what their devel-

opers claim? Do they meet the users' requirements? Are their knowledge bases

reliable and valid? Do they actually improve operator (and organizational)

performance? Can they be effectively integrated with and maintained among

more conventional software systems? Test and evaluation methods provide a

means of answering these and many other questions for the user community.

More generally, test and evaluation provides the feedback required for keeping

the expert system development process on track and, thereby, increasing the

probability that the expert system will be used and effective.

Expert system technology holds great promise for many reasons. First,

the financial cost to build expert systems has gone down. Expert system

software (e.g., shells) is now much more affordable than it was just five

years ago. Moreover, many shells are now available on personal computers,

thereby decreasing the implementation costs and problems that existed when one

needed expensive, expert system hardware. In addition, we now have a much

better idea of how to build expert systems. Our experience in building expert

systems has gone up significantly in a very short time. [Note that we use the

term "expert system" generally, to include all classes of knowledge-based

systems.)

Second, we have some clear commercial successes to point to; successes

other than MYCIN, PROSPECTOR, XCON, or other pioneering systems. To il-

lustrate this point, we can point to expert systems actually helping to (1)

process loan applications for Citibank (Keyes, 1989), (2) monitor the safety

of mines in the U.S. and other countries, (Newquist, 1988), (3) process

insurance claims for Blue Cross/Blue Shield of South Carolina (Weitzel and

Kerschberg, 1989), (4) diagnose functional problems with robots at Ford Motor

Company (Smith, 1998), (5) monitor the performance of on-line networks at

Suitomo Metal Industries of Japan (Newquist, 1988), etc.

1-I

Third, indications are that expert systems have barely impacted their

potential market. To quote Wolfgram et al. (1987, p. 21), "Many industry

analysts estimate that currently only 10% of potrntial expert system applica-

tions are being recognized ... " And even after 1988, which Chapnick (1988, p.

5) indicated "won't be considered a banner one for AI ... , everyone is still

predicting relatively high compounded growth rates (greater than 30%) through

the mid-1990s." Moreover, this estimate does not appear tI .nclude mass-

market expert systems applications, which combine expert-systems technology

with traditional applications-oriented software for the mass market. Examples

of currently available mass-market expert systems include AskDan for tax

preparation, SELLSTAR for sales-tracking and advice, Ex-Sample for determining

the appropriate sample size for a research project, and STS/Expert for stocks.

To quote Eliot (1989, p. 9), "Mass-market applications are the future of the

expert-systems industry and will affect applications everywhere."

Although there have been successes, there also have been failures. In

fact, many expert systems that are developed are simply not used. To quote

Casey (1989, p. 44), "For every success story, however, many expert-system

development projects have failed or are in deep trouble. Many expert systems

end up either 'dead on arrival' (never work), among the ranks of the un-

employed (never used), or serving a life sentence in research and development

(never finished)." The Department of Defense, for example, has spent millions

of dollars on expert system technology with minimal transfer to operational

personnel. And private industry has spent millions of dollars developing

expert systems with minimal impact on the size of the workforce these expert

systems were to replace.

The reasons for this state of affairs lie, of course, on both sides of

the fence. As Andriole (1989, p. 7) points out when discussing all forms of

decision support systems technology, "Vendors have vested interests in

overselling, and users are inclined to want to believe that a solution to all

their probl: ; can be found on one or two floppy disks." However, a focus on

motives obscures the bigger issues. For as Andriole (p. 7) points outs, "The

truth of the matter is that the state of the art of decision support systems

technology is unbalanced and evolving."

0
1-2

These statements are just as true for expert systems technology. What

has been unbalanced is that, all the rhetoric to the contrary, expert system

development efforts have until recently been primarily technology-driven.

What is evolving is a more requirements-driven, expert systems developmenc

process. The requirements-driven evolution is, of course, taking many forms.

Three aspects of it are overviewed here. When considering them, the reader

should keep the concept of "balance" in mind.

First, there is a growing realization that the success of an expert

system development effort depends on picking the right problem. To quote

Casey (1989, p. 44), "One simple rule for success that all would-be developers

should repeat out loud each day during morning calisthenics is, 'Pick the

right problem.' Just as location is the biggest factor in real estate,

selecting the right problem is absolutely essential to expert system develop-

ment. Unfortunately, the importance of selecting the right application is

often lost in the excitement and enthusiasm accompanying the initial decision

to use expert-system technology." Nor is it an easy problem. Casey has even

built an expert system called ESES (Expert System Expert System) to help in

problem selection.

Second, the users' needs are an essential aspect of problem selection.

The concern with "picking the right problem" is, of course, not new. In the

past, however, it has primarily focused on the characteristics of the task and

the experts who would provide the knowledge. Does the task primarily require

symbolic reasoning? Does it require the use of heuristics? Are decisions

based on incomplete and/or uncertain information? Is there a knowledge czar

or are there high levels of agreement among experts? Are experts available

over a long period of time?

More recently, the questions have also begun emphasizing the potential

user's explicit needs. To quote Smith (1988, p. 53), "In addition, you should

try to choose applications that: Are real. Don't try to solve problems that

don't exist-you'll only create systems nobody will use. Fit in with your

organization's future direction and plans ... Have measurable benefits. Pay

particular attention to such things as cost reductions and improvements in

quality, productivity, and working conditions. However, don't overlook

1-3

intangible benefits. These are sometimes referred to as 'warm fuzzies,'

because even though you can't quantify them, they are nice to have."

Third, test and evaluation are essential to keeping the expert system

development effort focused on users' needs. Again, one might say, this isn't

news. After all, isn't the purpose of prototyping to develop an illustrative

system so that potential users can evaluate it? So that they can make sure

that the final product meets their needs?

Unfortunately, prototyping has not been as successful as we might like

to believe. In an editorial in AZ Expert, Chapnick (1988, p. 5) referred to

"ft]he more general problem of the lamentable, unimplementable prototype

And Cholawsky (1988, p. 42) points out that "(tihe inability to move from a

prototype effort to an operational, delivered system is a chronic problem for

organizations developing expert systems." In an effort to help cure the

"prototyping blues." she emphasizes the importance of prototype planning that

explicitly identifies objectives and evaluation criteria for determining

prototype success. Nor is she alone. Adelman and Ulvila (in press), Andriole

(1989), and much earlier, Gaschnig et al. (1983) have all argued for the

importance of specifying explicit test and evaluation criteria early in the

prototype development process in order to keep development on track. Yet a

recent survey by Constantine and Ulvila (in press) has found that such

criteria or, more generally, requirements, are not specified in many (if not

most) expert system development efforts.

Concurrent with the evolution of a more requirements-driven development

process has been the evolution of methods for testing expert systems against

evaluation criteria. The American Association for Artificial Intelligence

(AAAI) held its first workshop on test and evaluation methods in Minneapolis,

MN, in August, 1988. This, the 1989 IJCAI workshop, and the 1990 AAAI

workshop focused primarily on methods for assessing the logical consistency

and completeness of the knowledge base (AAAI Workshop Proceedings, 1988;

IJCAI-89 Workshop Proceedings, 1989). There is a growing awareness, however,

that testing and evaluation is multi-faceted. As experience in software

testing (e.g., see Beizer, 1984; Hamlet, 1988) has shown, no single method is

completely adequate. In the case of expert systems, one must also consider

1-4

methods for assessing (1) the subjective opittion of users (e.g., Adelman and

Donnell, 1986; Klein and Brezovic, 1988; Ulvila et al., 1987); (2) the

predictive accuracy of the knowledge base (e.g., see Lehner, 1989; Lehner and

Ulvila, 1989; O'Keefe et al., 1987); and (3) the overall performance of the

organization using the system (e.g., Adelman, 1990a,b; Adelman and Ulvila, in

press).

The purpose of this book is to show one how to perform formal tests and

evaluations of expert system technology. It is a methods book. The goal is

to provide one with an understanding of the procedures required to perform

effective tests and evaluations, and how to incorporate these procedures into

the expert system development process. Moreover, to the extent possible, this

book provides illustrative examples of how to utilize formal test and evalua-

tion procedures to help readers to apply these procedures to ongoing expert

system developments. In short, the orientation is to provide a step-by-step

description of how to test and evaluate expert systems. This volume is

intended primarily for major expert systems. Volume 3 of this report provides

guidance for small expert systems.

It must be emphasized at the outset, however, that no methods book on

test and evaluation can be a "cookbook" because the focus of test and evalua-

tion is to ensure that the technology being developed is consistent with the

user's requirements. Unfortunately, users are often uncertain of exactly what

their decision requirements are, requirements analysis techniques are more

than fallible, and the procedures for converting requirements analyses to

system functions are still being refined by researchers. As a result, the

development team is faced with numerous judgments and decisions. Indeed, it

is the pervasiveness of these judgments and decisions that make successful

expert system development so difficult.

Broadly speaking, test and evaluation methods are tools for structuring

and making the Judgments and decisions inherent in the system development

process. As such, they represent the control mechanism for finding out what

needs to be done to increase the probability that the expert system will be

used by the decision maker(s) for whom the system is being built and, in turn,

improve organizational decision making and performance. Because evaluation

1-5

serves as a control mechanism for the development process, readers also need a

broad framework for considering evaluation issues, as well as specific test

and evaluation methods, in order to keep the development process on track.

This book will provide readers with such a framework. Moreover, the book will

show readers how the broad framework and specific methods can be integrated

into the development process.

Thus far, we have not distinguished between "test" and "evaluation." Wc

will do so here. Specifically, we will use the term "test" to refer to the

process of measuring the expert system's performance against specific cri-

teria. These criteria are generally referred to as "measures of effective-

ness" (MOEs). The measurement approach may be (1) logically-based, such as

testing the logical consistency of the rules in the knowledge base; (2)

empirically-based, such as testing the predictive accuracy of the knowledge

base against the judgmental accuracy of experts or ground-truth measures of

accuracy; (3) observationally-based, such as recording the features of the

expert system that users routinely use when solving test cases; or (4)

subjectively-based, such as using questionnaires to assess users' opinions of

the system's strengths and weakness.

We will use the term "evaluation" to refer to the process of aggre-ating

all the different tests in order to reach an overall conclusion about the

expert system. Central to the concept of "evaluation" is the concept of

"relative importance weights," or alternative decision rules, for combining

good test scores on some MOEs with bad test scores on others. Relative

importance weights represent personal judgments. We will argue from the

outset that such judgments should be made by the decision makers, or their

representatives, who are sponsoring the development of the expert system--not

by the testers. This initially might be disturbing to, and difficult for,

members of the sponsoring, development, and evaluation teams, for it em-

phasizes the subjective process decision makers go through when evaluating the

overall value of an expert system. However, it is quite consistent with a

requirements-driven development approach. Moreover, to quote Riedel and Pitz

(1986, pp. 987-988), "There is no way to avoid the fact that the overall MOi_

must be based on such judgments, or the fact that no mechanical procedure can

replace this subjective assessment..."

1-6

The remitnder of the first chapter is divided into three sections. The

first section presents a decision-making perspective and paradigm as a

backdrop for considering the decision to develop an expert system, and the

role of test and evaluation with respect to this decision. The second section

overviews a multi-faceted, test and evaluation approach for providing the

range of information required by the organization building the expert system.

The third section provides a case study showing how this approach can provide

this information and, thereby, enhance prototype development.

A DECISION-KAKING PERSPECTIVE AND PARADIGM

When testing and evaluating expert systems, it is important to remember

the obvious, which is that the overall aim of an expert system is to improve

the effectiveness of the organization using it. Improved organizational

effectiveness can occur in many ways, such as through decreased personnel

costs, greater access to expert knowledge, or improved decision making. The

latter focus will be emphasized throughout this book because of the ever

increasing importance given to effective decision making for the success of

post-industrial organizations (e.g., see Huber, 1986).

Simon (1960) has used three categories to describe decision-making

activities: intelligence, design, and choice. "Intelligence" refers to the

activities inherent in problem identification, definition, and diagnosis. It

is, as Huber (1980) points out, the conscious process of trying to explore the

problem in an effort to find out the current state of affairs, and why it does

not match our desires. "Design" refers to those activities inherent in

generating alternative solutions or options for solving the problem. It

involves "... identifying items or actions that could reduce or eliminate the

difference between the actual situation and the desired situation" (Huber,

1980, p. 15). And "choice" refers to those activities inherent in evaluating

and selecting from the alternatives. It is the action that most people think

of when one makes a decision.

As Huber (1980) and others (e.g., Andriole, 1989; Sage, 1986; Wohl,

1981) have pointed out, decision-making activities are a subset of problem-

solving activities. For example, the first three steps in Huber's five-step

1-7

problem-solving paradigm are those activities that require (1) problem

identification, definition, and diagnosis; (2) the generation of alternative

solutions; and (3) evaluation and choice among alternative solutions. These

steps are conceptually identical to Simon's decision-making categories. The

fourth step in Huber's paradigm involves those activities inherent in imple-

menting the chosen alternative. The fifth step involves those activities

inherent in reviewing or monitoring the implemented action in an effort "...to

see that what actually happens is what was intended to happen" (Huber, 1980,

p. 19). If there is a significant mismatch between the actual and desired

state of affairs, we are back to step #1, exploring the problem.

Although it is presented within the context of military tactical

decision making (and aiding), Wohl (1981) has presented a problem-solving

paradigm that explicitly identifies the evaluation functions inherent in

decision making. Figure 1-1 presents Wohl's (1981, p. 625) SHOR (Stimulus-

Hypothesis-Option-Response) paradigm. Intelligence activities are differenti-

ated between the Stimulus and Hypothesis elements of the SHOR paradigm. In

particular, the Stimulus element includes data collection, correlation,

aggregation, and recall activities; it naturally includes many of the activi-

ties also included in Huber's last problem-solving stage-that of monitoring

the situation. The Hypothesis element is that aspect of Intelligence that

involves creating alternative hypotheses to explain the cause(s) of the

problem, evaluating the adequacy of each hypothesis, and selecting one

hypothesis as the most likely cause of the data.

On the basis of the selected hypothesis, or hypotheses if one cannot

differentiate between hypotheses because of the uncertainty and/or ambiguity

in the data, the decision maker generates alternative options for solving the

problem. As in Simon's and Huber's paradigms, the Option element in the SHOR

paradigm explicitly differentiates between option creation, evaluation, and

selection activities. Finally, on the basis of the selected option, the

decision maker takes action, which includes the planning, organization, and

execution of a Response to the problem, analogous to the fourth step in

Huber's problem-solving framework.

1-8

lOINIIC ILEMENTS 'UWCTIOWN RESJIRID I"POMLATI•r POClllUlO

GAT"r1410'I'lT I
-,ASILTIES. DOCTRINWE.

STIMUL, I FILTRItORRMELATI POITION. VELOCITY.
MDATA, TYPIE MAU MOMENTUM.

AGORIOATEIOIVLAY INERTIA. RMILIEVU AND

'RU hI ONU TMIMOS DATA

tTORUIMMCAL
I

C
CREATE 0 WHERE AM I?

a WlERE Is THII ENEMY V

"HIPOTH),IEll A WHAT 15 ME DOI NG?

EIRNCEPTIOok EVALUATE 1 H CAN I TNWAlJT Him?
II H.OW CAN I T0 mAR iNIH

ALLTlRNATIV KI NO CA 1 D IM IN?

S AN I IN SALAMCE?
SELECT C MO LONO WILL T TAX

A METo. -. P

T O LONO WILL IT TAKE
CREATE C MM TO... ?

IN NOW WILL IT LOOiM

OP1)WO .. NOW"),
4111111,014151 1

ALTIINATIV 1E5 EVALUATE I WHAT IS ThE MOMT
IMPORTANT TMING TO DO

o MIOT NOW?
11CIC "O 00I O1ET IT DONE?

THE AIR TASKING ORDER

WH*ATREVONU WHON

IACTIONI OROANIZE WHIRE
R It .HOW M C

J[THE NAR .REAL TIE
___________ ____________ ODIPI• CA t KI~OW&W0T I

Figure t-1: The SHOR Parmdlgm
(from Wohl, 1981; last column for illustrative purposes only)

As Wohl (1981, p. 626) points out, the "... SHOR paradigm is basically
an extension of the stimulus response (SR) paradigm of classical behaviorist

psychology to provide explicitly for the necessity to deal with two realms of
uncertainty in the decision-making process: (1) information input uncertain-

ty, which creates the need for hypothesis generation and evaluation; and (2)
consequence-of-action uncertainty, which creates the need for option genera-

tion and evaluation." Different elements of the SHOR paradigm become more or
less important depending on where the uncertainty resides. For example,
"*Where options are more or less clearly prescribed but input data is of low

quality (e.g., as in military intelligence analysis), a premium is placed upon
creation and testing of hypotheses (e.g., where is the enemy and what is he
doing?). Where input data are of high quality but options are open-ended

(e.g., as in the Cuban missile crisis), a premium is placed upon creation and
analysis of options and their potential consequences (e.g., if we bomb the

1-9

missile sites or if we establish a full-fledged naval blockade, what will the

Russians do ?) ... By contrast, tactical decision-making in support of

combined air-land operations is generally characterized by both poor Quality

input data and open-ended options; hence, there is a much greater need than i>

other military situations for rapid hypothesis and option processing in the

field" (Wohl, 1981, p. 626).

As Adelman (1987) has pointed out, the SHOR paradigm also is consistent

with more currently popular cognitively oriented paradigms. For example, the

script theory representation by Shank and Abelson (1977), the schema theory

representation by Noble (1989), and the fuzzy set decision rule representation

by Zimmermann and Zysno (1980) all have both situation assessment and action

components. The situation assessment component typically operates via a
'pattern matching' mechanism, which is consistent with the Stimulus and

Hypothesis elements of the SHOR paradigm. Once a script or schema is ac-

tivated, there is a set of actions that is consistent with it; this is

consistent with the Option and Response elements of the SHOR paradigm.

When considering expert system test and evaluation, it is important to

remember that the decision makers who have decided to build an expert system

are in a tactical or strategic decision-making situation, depending on the

forecasting and planning horizon under which they are operating. Moreover,

the situation can be represented by the SHOR paradigm. For, on the basis of

available and projected data, the decision makers are making hypotheses about

the nature of the environment that they and their organization will face in

the future. That is, they are forecasting the future state of affairs and

trying to assess whether their current actions will be effective or not in

achieving their future goals and objectives. And they are generating options

to deal with their hypotheses regarding potential future performance short-

falls. Given all the stimuli about the dynamic nature of future business and

government (particularly military) environments, the ever increasing role that

decision making will play in organizational success, the decreasing financial

cost of computer hardware, and the ever increasing power of computer systems

to support decision making, it is not surprising that decision makers in ma-v

organizations think that expert system technology will be an effective

response to their hypotheses about the future.

1-10

It is important for us to keep this "big picture" in mind when testing

and evaluating expert systems. We must remember that hypotheses about the

problem environment and judgments about the relative effectiveness (or

utility) of various options are often made, respectively, under both informa-

tion input and consequence-of-action uncertainty. It is important to realize

that, at the time that it is made, the decision to develop an expert system

is, in fact, nothing more than a hypothesis that this option will be an

effective response to the problem environment. This may or may not be true.

Other options, either singularly or in combination with the development of an

expert system, may be better options. From this perspective, it can be argued

that the ultimate goal of test and evaluation is to help senior-level decision

makers in an organization decide whether the option of developing an expert

system, either singularly or in combination with other actions, is an effec-

tive organizational response for dealing with the present and/or future

problem environment.

Once the development process is underway, the application of formal test

and evaluation methods permits one to monitor the perceived utility of the

expert system under development and take corrective action to increase the

probability of its use and effectiveness. This can be seen by using the SHOR

paradigm to represent the expert system development process. Specifically,

the development team's job is to plan, organize, and execute the selected

option, which in this case is the development of a specific expert system.

The purpose of test and evaluation is to systematically gather, filter, and

aggregate data (i.e., stimuli) about the expert system under development in

order to test the hypothesis that all is going well; that is, that the expert

system will do what decision makers and users want it to do and, thereby, be

valuable to them. If all is not going well, that is, if there is a problem or

if it is not clear what action to take, then options need to be generated,

evaluated, and selected for correcting the problem(s) so that the development

process can be kept on track. This clearly requires iteration, and is quite

consistent with a requirement-driven prototyping process.

As the above discussion implies, there are two groups of persons that

utilize and, indeed, require the results of formal tests and evaluations. The

first group is the development team. It is composed of user(s), designers,

Sroup1

knowledge engix iers, domain experts, and programmers. The second group is 'lhe

sponsoring team. If an expert system is being developed only for the use of a

particular decision maker, then he or she is both the user and financial

sponsor of the expert system. However, for many expert system development

efforts, particularly those funded by the federal government, the sponsors and

users of the expert system are distinctly different groups of people. As a

result, "Policy decisions must be made about the system's design, implementa-

tion, fielding, funding, and incorporation into the organizational function-

ing. These decisions are made by program managers and sponsors and more

general policymakers. The last group is usually interested in more general

information about the aid's potential or actual effectiveness" (Riedel and

Pitz, 1986, p. 984).

As Beizer (1984), Hetzel (1984), Riedel and Pitz (1986), and others have

recommended, we will assume that the development team also includes testers

and evaluators whose job is to obtain the test and evaluation data required to

keep the development effort on track. For the simplicity of presentation,

however, we will often use the terms "testers" and "evaluators" interchangeab-

ly. We realize that in many organizations, such as in the U.S. Army for

example, "testers" and "evaluators" are distinctly different groups of trained

individuals who would be found in different organizational units. We will try

to maintain the distinction here too. However, we will at times blur the

distinction to facilitate the presentation of material. We do not feel

uncomfortable in doing so, because, from the perspective of this book, both

"testers" and evaluators should be proficient in obtaining both test and

evaluation data.

The sponsoring and development groups make different types of decisions

during the expert system development process and, consequently, require

different types of information upon which to base those decisions. Ideally,

good tests and evaluations have to be capable of addressing the different

needs of both groups. This requires the application of different test and

evaluation methods, appropriately matched to the information and decision

needs of different persons throughout the development process.

1-12

Unfortunately, it is often not possilale to systematically incorporate all

members of the sponsoring group into the expert system development process.

(In fact, it is often difficult to get users to actively participate as

members of the development team, although both research and common sense have

demonstrated the importance of their participation to the successful implemen-

tation of all forms of decision support technology.) Numerous reasons are

given for their lack of involvement, including busy schedules, a belief in

"hands-off" policy during development, a lack of desire to be involved, a lack

of money, etc. Evaluators need to be conscious of this problem and do what

they can to incorporate members of the sponsoring team into the development

process. Throughout the book we will discuss explicit evaluation methods for

addressing the policymaking decisions about which members of the sponsoring

team need information.

As the above discussion suggests, many expert system development efforts

do not use explicit evaluation methods to provide a control mechanism for the

development process. Obviously, we think that they should and, we will argue,

that doing so will increase the probability of the successful implementation

and value of the expert system. It is important to note that, as Riedel and

Pitz (1986, p. 994) point out, "... user satisfaction with the aid is not a

sufficient criterion for ivaluation because of the extraneous factors that can

affect satisfaction." There are numerous other factors, such as the quality

of the decisions made with the expert iystem, the logical soundiness, compleze-

ness and predictive accuracy of the knowledge base, the effectiveness of the

match with personnel and organizational characteristics, etc., that go into

making a good expert system. User satisfaction is, however, a necessary

condition for use of the expert system. "... [I]n the final analysis, the

purpose of developing an aid is to have It used, presuming it to be effective.

Similarly, the purpose of the evaluation is to produce information that is

used. This concern for impact on design or policy decisions is the deter-

minant of what evaluation information to obtain. Mow to obtain that informa-

tion in a valid manner is left to the expertise of the evaluator."

The evaluator's job is to select the method(s) that is most appropriate

for the decision maker's questions, stage of the expert system development

process, available funds, etc. The basic requirement is for an eclectic

1-13

approach that is based on the evaluation purpose and situation. The goal

throughout is to provide guidance in making the judgment- and decisions

inherent in building the expert system. It is for this reasen that evaluation

has been referred to as the control mechanism that keeps the development

process on track.

A MULTI-FACETED TEST AND EVALUATION APPROACH

Adelman and Donnzll (1986) presented a three-phased (or faceted)

approach for testing and evaluating decision support systems; Adelman and

Ulvila (in press) recently extended it to expert systems and showed how it

could be used when selecting classes of test and evaluation methods. The

three-phase evaluatiot approach is composed of a subjective phase for obtain-

ing users' opinions regarding the system's strengths and weaknesses; a

technical evaluation phase for "looking inside the black box;" and an empiri-

cal evaluation phase for assessing the system's iml-ct on performance.

Specifically, the subjective evaluation phase focuses on evaluating the expert

system from the perspective of potential users. The goal of the subjective

evaluation is to assess whether the users like the expert system, what they

consider to be its strengths and weaknesses, and what changes they would

suggest for improving it.

The technical phase focuses on evaluating the expert system from both an

internal (heuristic) perspective and an external (systemic input/output)

perspective. For example, most people considering the technical evaluation o0

an expert system might focus on assessing the logical (and functional)

adequacy and predictive accuracy of its kr.nwledge base. R-ishby (1988) has

called these "competency requirements." However, from a transfer and main-

tenance perspective, one also needs to be concerned with conventional test and

evaluation issues, such as whether the system can be effectively and effi-

ciently integrated with other software and hardware systems in the operational

environment, and whether it was designed consistent with the organization's

design and coding standards. Rushby has called these concerns "service

requirements." A comprehensive test and evaluation framework n edr to addres:

both classes of "technical" requirements.

1-14

The empirical evaluation phase focuses on obtining obJe:ctive measures

of the system's performance. The goal of the empirical phase is to assess,

for example, whether the system makes proper recommendations and whether

persons make significantly better or faster decisions or use significantly

more information working with, rather than without, the system, and to

identify mechanisms for improving performance. It is important to note that

the potential users of expert system technology may not be experts in the

substantive domain. In these cases, one needs both experts and users to

participate in the evaluation. The experts are needed for the technical

evaluation of the knowledge base; the users for the empirical evaluation of

system performance. If possible, experts should also participate ill the

empirical evaluation in order to systematically assess whether system perfor-

mance is a function of user type. In addition, as will be illustrated in the

case study presented later in this chapter, participation of domain experts in

the empii-. al evaluation often provides insight into the functional complete-

ness and predictive accuracy of the knowledge base.

For an evaluation to be effective, the evaluator must decide in advance

what is to be tested. This is done by identifying measures of effectiveness

(MOEs) that are designed to answer the evaluator's questions. These questions

depend on who needs the information-that is, whether it is a member of the

development or sponsoring team-the type of information needed, the stage of

the development process, the interface being evaluated, etý.. The resulting

MOEs may be either logically-based, empirically-based, observationally-based

or subjectively-based variables depending on the selected testing method, a

point that will be returned to later in the chapter. The only restrictions

are that each MOE must be measurable and that it provides the required

information. Or to put it differently, the MOE must be correlated (positively

or negatively) with the overall utility of the expert system under develop-

ment.

Table 1-1 presents the hierarchy of subjective MOEs used in the case

study presented later in this chapter. (Note: Chapter 2 presents a hierarchy

of MOEs that (1) is more directed toward supporting the selection of test and

evaluation methods, and (2) gives more emphasis to testing and evaluating the

knowledge base.] The MOE hierarchy presented here was developed by Adelman

1-15

ek. LUL)- , I

9w2

ic ~ I x -0 LU
LU -4 W

cc CLU w ~ UU 0. L2~3 0 a

> L) ui a-. of LLx

o o de C. La 3 1 . L Q ~ ~
w f 2'f JM - uOU.

to U uC 2 U U L - L 3 U

O ~20
0~ ~ m m PMz ~ p ~ ~ ~L

z II;ZI

* 0j

Z I. - u w:3 -
~0 0 : *

u LI LU -K F4 CL -K L ý (

u FM u 4c ac 3.- 0

4,0~~Mw-u .4LZ - LU 0 L~-

CD -&0 om 3Kl
> a coOO usI-' U l -~ 0 4 .~ - L ~ 8

-J) U01 'QI -Cs-ý

LiI. 0y i . NC fu rm .

9 -V -K

* U en w -

w 0 (nn"o !:N W

"id -. g
cc~~ ~ = ANJU L L g

0 c 0ww- 2" 0- -W LIjNj

*w u Li)LL .L

Ul tw -. 4Q 3-. -3-

w IN
(AIjC O U -0 . .

O..2LU 2 Iat
(n 41 U8

V ~In N r~q n1-16~

and Donnell (1986) in order to evaluate the adequacy of five different

decision support system prototypes, including three expert systems, developed

to support U.S. Air Force tactical decision making. We use the term "subje-

ctive MOEs" because a questionnaire was used to assess the prototypes'

performance on the MOEs. Consistent with research by Adelman (1982). Huber

(1986), Shycon (1977) and others indicating that evaluators must monitor the

compatibility of decision technology with the characteristics and needs of the

organization, as well as the user, the hierarchy of MOEs is organized to

measure the three interfaces represented pictorially in Figure 1-2.

DECISION-MAKING ORGANIZATION

USER EXPERT
SYSTEM

ENVIRONMENT THREE INTERFACES TO BE EVALUATED

Figure 1-2: The Three Interfaces to Monitor and Evaluate when Developing Expert Systems

The first interface is between the expert system and the user (ES/U).

Here the issue is the extent to which characteristics of the system facilitate

or hinder its usability. The second interface is between the user (and expert

system) and the larger decision-making organization (U/DMO) of which both are

a part. Here the issue is to what extent the system facilitates the decision-

making process of the organization. The third interface is between the

decision-making organization and the environment (DMO/ENV). Here the issue is

whether or not the expert system improves the quality of the organization's

decision making and, in turn, the organization's overall performance.

As can be seen, the MOEs presented in Table 1-1 are organized into a

hierarchy such that the three uppermost levels represent the three interfaces

1-17

in Figure 1-2. The topmost level of the hierarchy represents the expert

system's overall utility or value to the decision maker and organization for

whom it is being built. Each of the three uppermost levels of MOE categories

is subdivided further until it is easy to identify distinctly measurable HOEs.

By assuming that each terminal node in the hierarchy could be translated into

an MOE, the task of evaluating an expert system is translated into one of
"scoring and weighting." That is, one first tests the expert system on each

of the bottom-level nodes of the evaluation hierarchy in order to obtain the

system's scores on the HOEs. By then "weighting" these "scores" by the

relative importance of the HOEs and HOE categories moving up the hierarchy,

one obtains an explicit, retraceable process. for evaluating the overall value,

and relative strengths and weaknesses, of the expert system.

The HOEs in Table 1-1 will be considered in more detail in the case

study. For now, it is important to make three points. First, the specific

MOE(s) one selects for testing and subsequently evaluating one's expert

systems should be determined from a decision-making perspective. What

information is needed? Who needs it? What stage is the expert system

development process in? In addition, one needs to consider how these ques-

tions, as well as potentially limiting factors (e.g., funds, time, personnel,

etc.), affect the selection of testing methods. Remember, the selection of a

particular method is a decision in and of itself, for methods differ on

various dimensions (or attributes), such as the generalizability of their data

to real-world settings, their costs, the amount of control the evaluator has

in implementing them, etc. Testers and evaluators need to systematically

consider the technical tradeoffs, limiting factors, and decision-making

perspective when selecting test and evaluation methods.

Second, an eclectic approach is required to effectively test and

evaluate expert systems. As Riedel and Pitz (1986) point out, many people

erroneously assume that objective, empirical measurement is the most valid

and, therefore, preferred type of data to collect. However, the preference

for a particular type of data depends on the relative importance of the MOE

being measured by that data. If the system's performance in solving test

cases is the most important MOE, then objective empirical data will be the

most important type of data to collect. However, if the user's opinion of thc

1-18

expert system is the most important MOE, which it often is for systems

designed to assist experts, then subjective data will be the most important

type of data to collect. Moreover, as we pointed out earlier, aggregation of

all the test data to make an overall evaluation of the expert system is

inherently a subjective judgment.

It must be remembered that the expert system can be tested on many

different kinds of MOEs. Different testing methods and, thus, types of data,

are appropriate for different MOEs. For example, the methods used to test the

logical consistency of the knowledge base are different from those used to

test the user's performance with the expert system or how well the software is

written or what the users think of the reasoning trace. The three-phased

approach presented herein represents the kind of eclectic approach required to

comprehensively test and evaluate expert systems. The goal of this book is to

overview a range of subjective, technical, and empirical methods for testing

an expert system on MOEs important to the sponsoring team.

Third, the hierarchy of MOEs presented in Table 1-1, when combined with

relative importance weights, represents an application of Multiattribute

Utility Assessment (MAUA). MAUA, as well as other subjective evaluation

methods, will be considered in detail in this book. What is important to note

here is that these methods can be used to evaluate the implications of the

different tests from the sponsoring team's perspective. In doing so, it is

the tester's job to test the expert system on each of the bottom-level MOEs in

the hierarchy, and to indicate their relative importance from a technical

perspective. However, it is the job of the sponsoring team (and users) to

assign the relative importance weights to the MOE categories; for example, how

important is the logical consistency of the knowledge base versus its func-

tional completeness versus its predictive accuracy versus its integration with

existing databases versus the user interface versus the system's response time

versus the user's/organization's performance, etc. Both the tester and

sponsoring team may be involved in assigning the degree of importance to

different levels of performance within any given MOE category. The evaluator

must work with members of the sponsoring team and users to make these "trade-

off judgments" and, more generally, develop an explicit framework for relating

0
1-19

the multitude of specific tests to an overall evaluation of the system's value

to the organization.

THE CASE STUDY

Over the twenty-four-month period from September, 1981, to September,

1983, PAR Technology Corporation was the prime contractor to the Rome Air

Development Center (RADC) on a contract designed to develop five decision

support system (DSS) prototypes for supporting U.S. Air Force (USAF) tactical

decision making. Four tasks were performed on this project. Task I was a

detailed study of the various activities, and their functions, performed in

USAF tactical decision making. The study was performed with a view toward

defining potential aiding situations in which the technologies of Artificial

Intelligence, Decision Analysis, and Operations Research might be applied to

aid decision making. In Task II, 28 prototypes were proposed for development.

The proposals were subjected to a two-phase utility analysis and to a cost-

benefit analysis in order to identify the five prototypes that would be

developed on the project. These five DSS prototypes were developed by PAR and

its subcontractors (Decisions and Designs, Inc. and Systems Control Technol-

ogy, Inc.) in Task III, with different companies building different prototypes

on the basis of the match between the technical requirements of the prototypes

and the technical skills of company personnel. All five prototypes were

evaluated in Task IV by a test and evaluation team led by the first author.

This section overviews the three-phased (i.e., technical, empirical, and

subjective) evaluation of a DSS prototype developed by PAR called DART, which

is an expert system (see Barth et al., 1983) to assist in activity node

identification. The activity node identification process addressed by DART is

extremely difficult to perform because of the varying nature of the nodes of

interest and the tremendous volume of available relevant data. Because of

limited time and potential information overload, experience has become an

increasingly important fpctor in the activity node identification process.

There are, however, few analysts with the necessary activity node identifica-

tion experience. An expert system DSS prototype represented a means of

capturing activity node identification expertise, and making it available to

inexperienced analysts. The DART prototype was to contain enough expert

1-20

knowledge to identify (with a degree of certainty) thirteen different types of

activity nodes. More importantly, the DART prototype had to be capable of

effectively communicating the rationale for the identification, for it was to

support the analyst's decision-making process, not replace it.

The results for each of the three evaluation phases are now considered,

in turn. It is important to emphasize three general points here at the outset

of the overview. First, there were limited funds and time to perform the

tests and evaluations. All test and evaluation activities from initial

planning, to conducting the tests and performing the analysis, and to docu-

menting the results, had to be conducted for approximately 10t of the pro-

ject's total cost. Moreover, the actual testing of all five prototypes had to

be conducted within a seven-month period. Finally, the prototypes were tested

sequentially, consistent with the participating contractors' development

schedule. For example, DART was the second prototype developed and tested; it

was tested in the second month of the testing period.

Second, consistent with the perspective of integrating test and evalua-

tion results into development, each prototype was tested twice. The first

test was with engineers at RADC who were novices in the prototype's domain

area, but who had at least a college degree emphasizing computer science or

engineering. The second test was with domain experts who represented poten-

tial users of the fully developed system. There were always at least two

weeks between the two tests to provide the development team with some time to

enhance the prototype based on the feedback obtained in the first test

session.

And, third, the overall purpose of the evaluation of DART and the other

four prototypes developed on the contract was to determine which ones showed

the greatest potential value to the Air Force and, therefore, should go on to

further development. Consequently, efforts were made to standardize the

evaluations of the five prototypes as much as possible. This fact, plus time,

money, and scheduling constraints for the evaluations, resulted in the

decision to emphasize the subjective and empirical evaluation phases over the

technical one.

1-21

In particular, each prototype was subjected to an experiment to test

whether the aid significantly improved users' performance. Second, the table

of subjective MOEs presented in Table 1-1 was used to obtain participants'

opinions of the prototypes' strengths and weaknesses. Lastly, each test and

evaluation session concluded with a round-table meeting between sponsoring

team and the domain experts who evaluated the prototype in order to further

help the sponsors assess whether the prototype was a good enough option to

warrant further funding. This last point clearly illustrates that the test

and evaluation team saw their overriding purpose to be providing the sponsors

with the stimuli necessary to test the hypothesis that the prototype would (or

would not) improve organizational effectiveness and, consistent with the SHOR

paradigm, to select the appropriate option(s) for proceeding in the future.

The following overview is based on Adelman and Donnell (1986); more

specific details can be found in Adelman and Gates (1983).

Technical Evaluation

The technical evaluation of the DART expert system prototype took place

at PAR's corporate headquarters in New Hartford, New York, in late January,

1983. The first issue, which was actually considered early in the development

process (Rockmore et al., 1982) was whether artificial intelligence was an

appropriate analytical method to select for the activity node problem. The

answer was an affirmative one. Consistent with the SHOR paradigm, the user's

job is to evaluate and select hypotheses regarding activity nodes. Artificial

intelligence is ideally suited for this requirement.

The technical evaluation focused primarily on the system characteristics

of DART's many modules. These modules are represented in Figure 1-3 from a

functional perspective. The most visible portion of the system is the

Executive, which assists the user in managing the aid. The Executive consists

of:

* The Inference Engine,

* The Advice Interpreter,

1-22

C.CC

'-C, cc

0 -1 jj
LU u5 .

CE I

LU LU w '(c

IWIu 9 1
..... 0 O

cc uj a

La

0r
cc2

* The Model Manager,

* The Display Manager.

Based upon a selected goal hypothesis (one of the thirteen identifiable

activity nodes), the Inference Engine accesses that portion of the Inference

Network which will analyze the pertinent, available information concerning the

goal. The rules contained in this selected segment of the Inference Network

use the data (or evidence) found in the message and associated degrees of

belief from the Evidence Manager to identify the most likely activity node.

The Advice Interpreter advises the user of the degree of belief for this

identified activity node. Additionally, the user can consult the Advice

Interpreter for the evidence used in reaching this decision. Once advised,

the user can call the graphics display via the Display Manager or call the

Model Manager to update the activity node identification model. The Display

Manager provides the means to display terrain data; the Model Manager places

identified activity nodes on this terrain. The Message File and Driver

provide a time-sequenced list of reports which the analyst can use to corre-

late multiple reports of the same activity node, thereby increasing the

confidence in the identified activity node.

In brief, the evaluation team concluded that, from a technical perspec-

tive, the DART prototype contained all of the modules necessary for a consul-

tative expert system to support the activity node identification, decision-

making process. The experts who participated in the empirical and subjective

evaluations supported this position, for, although they recommended many

improvements, they neither recommended additional modules nor deletions of

those already developed for the DART prototype. The logical consistency,

functional completeness, and predictive accuracy of the knowledge base were

considered as part of the empirical evaluation with the domain experts.

Empirical Evaluation

The goal of the empirical evaluation phase was to objectively assess

whether DART significantly improved the accuracy of analysts performing the

target identification process. To accomplish this goal, an experiment was

performed. The three independent variables were (1) whether the analyst wag

1-24

experienced or not in activity node identification, (2) whether the analyst

performed the activity node identification task with or without DART, and (3)

which of two different activity node identification problems the analyst

performed. The dependent variable was the quality of the analyst's solution

to the activity node identification problem.

The test setting for the empirical evaluation was created concurrently

with the performance of the technical evaluation. An isolated room 14 feet by

12 feet was used for the unaided condition. A smaller room with a computer

terminal and DeAnza display, both of which were linked to a VAX 11/780 system,

was used for the aided condition. [Note: Operational versions of DART and

the other DSS prototypes were to be tailored for military microcomputers on

subsequent procurements at the government's discretion.] Both test areas had

1:500,000 and 1:250,000 scale charts of the geographic area of interest used

in the activity node identification problems.

The participant's task for each of the two problem scenarios was to

identify ground components of opposing forces moving in a specified direction

over the area of interest on the basis of message data. The problems differed

in the number of each of thirteen possible activity node types and the

available message data. In the first problem there were 100 messages; in the

second problem there were 80 messages. Each participant had 1 1/2 hours to

perform each problem regardless of whether he or she worked with or without

DART. The activity nodes identified by each participant were placed on

acetate and overlaid on the large wall map representing the geographic area

for which the problem scenarios were created. Since a correct solution

existed for each scenario, it was possible to determine the number, location,

and type of correctly identified activity nodes. Using this information and

looking at the acetate overlay map, the experts then rated the quality of each

participant's solution for each scenario on a 0-to-10 scale, where higher

scores meant a better solution. Quialitative ratings were required because all

misclassifications were not equally detrimental; the solution's quality

depended on an analyst's judgment as to the importance of the type and

location of the misclassifications. Each participant's solution was coded by

letter to minimize the experts' ability to identify its author.

0
1-25

The empirical and subjective evaluations were conducted at PAR's cor-

porate headquarters in New Hartford, New York, over two 4-day periods in

February and March, 1983. The participants for the first session were RADC

personnel who had no activity node identification experience; these four

participants are referred to as nonexperts. The participants for the second

session were U.S. Air Force analysts with considerable activity node iden-

tification experience; these three participants are referred to as experts.

The participants were provided through the cooperation and courtesy of

different Air Force agencies. Although the sample size was small for an

empirical evaluation, it was as large as could be obtained, given prior Air

Force commitments. Larger sample sizes should be used whenever possible to

provide the power necessary for traditional statistical tests of a prototype's

effectiveness (e.g., see Adelman at al., 1982).

The primary value of the session with the nonexperts was identification

of the following three necessary modifications to the test conditions and the

DART user interface. First, the nonexperts did not have enough hands-on

training in using DART; consequently, the experts' schedule was modified to

provide more training. Second, DART was slow and cumbersome to use because it

required the user to update the Model Manager and Display Manager after each

message by sequentially accessing a number of menus; consequently, DART was

modified to give the user the ability to automatically update the Model

Manager and Display Manager after each message, thereby making DART much

faster to use. And third, the message flow in the unaided participants' task

was found to be unrepresentative of the analyst's actual environment; conse-

quently, the message flow was modified for the session with the experts so

that it better represented the analyst's actual environment.

The results of the session with the nonexperts were, however, not

included in the empirical and subjective evaluations of DART because so many

changes were made to the test conditions and DART user interface between

sessions that, prior to the session with the experts, the test and evaluation

team concluded that it was inappropriate to combine the results of the two

sessions. However, it is of importance to note here that the cumulative

effect of the three classes of problems described above resulted in the

nonexperts performing the activity node classification task worse with than

1-26

without DART at a statistically significant (p < .05) le-,el. Integrating the

feedback from the tests with the nonexperts back into the development process

will, as will be shown, significantly improve the DART prototype.

The schedule for the DAkT evaluation session with the experts proceeded

as described below over the 4-day evaluation period. Monday morning was

dedicated to providing a technical overviaw of DART so that the experts would

understand how DART performe.: -tivity node identification. 0.. Mcnday

afternoon and most of Tuesday, the experts received hands-on training in using

DART. This was accomplished by providing each expert with two 1 1/2 houu

training sessions on DART. The DART test scenarios were completed by the

experts on Tuesday and Wednesday. Two of the experts worked the first

scenario in the uinaided condition, and one used DART. In contrast, two

experts worked the second scenario using DART and one worked without it. This

arrangement ensured that each expert had used DART to solve one scenario, and

that there were 3 aided and 3 unaided solutions in total. On Thursday, the

experts rated the quality of the three solutions generated by the experts for
each scenario. The experts' ratings were based on the number, location, and

type of both correctly and incorrectly identified activity nodzs. The

participants also completed the evaluation questionnaire.; and eiscusseL their

impressions of DART's strengths and weaknesses with members of 2AR's evalua-

tion team and RADC personnel monitoring the contract.

The experts' quality ratings of the experts' solutions, and the condi-

tions under which they were generated, are presented in Table 1-2. The higher

the number, the better the quality rating. Pearson product-moment correla-

tions (r) were calculated to determine the extent of agreement among the three

experts' ratings. Pearson product-L.-went correlations zau vary from +1.0

(indicating perfect agreement) to -1.0 (indicating periect disagreement); a

value of zero indicates that there is no relationship among the ra-ings. The

Pearson product-moment correlations were computed by combining the ratings for

both scen-rios, thereby creating a sample size of six (instead of three) and,

in turn, greater confidence in the results. The Pearson product-moment

correlations among the quality ratings of experts El and E2, El and E3, and E2

and E3, were .94, .93, and .97 respectively. All three correlations were

statistically significant at the p < .01 leval, thereby indicating that there

1-27

was considerable agreement among the experts' quality ratings of the solu-
t ions.

Table 1-2: TIhe Experts' Quality Ratings for their Solutions
with and without DART

SCENARIO #1 SCENARIO #2

GOB* El E2 E3 Mean GOB* El E2 E3 Mean

A (Unaided) 3 5 3 3.67 A (Aided' 6 8 7 1.0

B (Unaided) 8 8 8 8.0 B (Unaided) 9 9 9 9.0

C (Aided) 5 7 7 6.33 C (Aided) 7 8 8 7.67

*GOB is Ground Order of Battle

The mean quality rating and the sample size for each of the four cells

in the 2 (Aid) x 2 (Scenario) design for the experts' solutions are presented

in Table 1-3. As can be seen, there are onl', three observations each in the

Aided-Scenario I and Unaided-Scenario II cells. This oc7curred because, since

only three experts participated in the evaluation, two cells nf the design

could have only one participant if each expert were to (I) perform each

scenario only once and (2) work both with and without the aid. The Aided-

Scenario I and Unaided-Scenario II conditions, and the expert who worked them,

were rangomiy selected by the evaluation team. Table 1-3 shows a sample size

of three observations for these two cells because each of the three experts

independently evaluated the one expert's solution. The Unaided-Scenario i and

Aided-Scenario II cells have a sample size of six obs -vations because each of

the three experts independently evaluated the two experts' solutions for these

two cells. Each expert's rating was used as an independent observation of

each solution, instead of taking the mean of the three experts' ratings for

each solution, to have a sample size that even approached the size necessary

for performing statistical tests.

1-28

Table 1-3: Experts' Mean Quality Ratings and Sample Size
for the 2 (DSS) X 2 (Scenario) for the Experts' Solutions

SCENARIO I SCENARIO II x

N=3 N=6 N=9
AIDED

6.33 7.33 7,00

N-6 N=3 N 9
UNAIDED

5.83 9.00 6.89

Na9 N 9 N=18
x

6,00 7.89 6.95

A repeated measures t-test, where the experts were the repeated measure,

was used to statistically determine whether, on the average, (1) experts

performed better aided than unaided, and (2) if performance was significantly

better for one scenario than the other. [Note: An Analysis of Variance was

not used because, due to the small and unequal sample sizes for the cells,

analysis of the Aid x Scenario interaction was not warranted.] There was no

statistical difference in the mean scores for the aided and unaided condi-

tions; experts performed equally well working with DART as without it. Mean

performance was, however, significantly better for Scenario II than Scenario I

(t - 2.34, df - 4, p < 0.05). This may have been due to practice effects

because Scenario II was performed after Scenario I. This hypothesis is

unlikely, however, for the participants were experts who, of course, had

substantial experience performing substantially more complex scenarios in

operational settings. A more likely explanation is that Scenario II was

easier than Scenario 1.

An additional analysis was performed in an effort to better understand

why there was no difference in the performance of experts working with and

without DART. This aspect of the empirical demonstration illustrates but one

of a number of different methods that will be considered later in this book

for testing the predictive accuracy of an expert system's knowledge base. In

1-29

particular, the evaluation team counted the number of mistakes the experts

made for the thirteen different activity nodes in the two scenarios, both with

and without DART. Although no statistical tests were performed because of the

small size for each node, examination of the mean scores suggested that, when

aided, the experts were better in identifying certain activ.ty nodes, and

worse in identifying others. This suggests that (1) DART's rule-base for

identifying certain activity nodes needed improvement, and (2) that such

improvement would result in experts performing the test scenarios better with

DART than without it.

Subiective Evaluation

The subjective evaluation of DART was composed of the experts' answers

to two questionnaires. The first questionnaire was of a short-answer format

with the questions designed to assess the expert system's performance on the

subjective MOEs presented in Table 1-1. The second questionnaire was of an

open-ended format which gave the experts an opportunity to indicate, without

any prompting from the evaluation team, what they perceived to be the

strengths and weaknesses of the DART prototype and recommend improvements to

it.

We will present only the results obtained from the first questionnaire

for two reasons. First, there was general agreement between the answers to

the two questionnaires; consequently, it is unnecessary to present the results

to both of them here. Second, the short-answer questionnaire had been

standardized so that, except for substantive changes unique to DART, the same

questionnaire could be used to assess participants' impressions of the

strengths and weaknesses of each of the five prototypes developed on the

contract; consequently, the short-answer questionnaire represented the first

step in developing an empirically-based questionnaire that could be used by

other people evaluating decision support technology. This focus, as well as

the detailed analysis of the questionnaire for all five of the prototypes

developed on the contract, can be found in Adelman, Rook, and Lehner (1985).

Before describing the questionnaire, we will briefly describe the MOE

hierarchy to facilitate readers' consideration of how to develop ones ap-

1-30

propriate to their development projects. In particular, the MOE categories

were designed to be as general as possible so that the same MOEs could be used

to evaluate each prototype. To accomplish this, Adelman and Donnell (1986)

refined and expanded the hierarchy of evaluation criteria initially developed

by Sage and White (1980) to be compatible with the three-interface perspective

presented in the previous section of this chapter. In doing so, they used as

many of the criteria as possible that were used earlier in the contract when

deciding which prototypes to develop in the first place. Other MOEs could

(and would), of course, be used in an evaluation, depending on the character-

istics of the expert system and the concerns of members of the sponsoring and

development teams.

MOEs assessing the quality of the Expert System/User interface were

divided into two major groups of criteria: those that assessed the match

between the expert system and potential user's background, workstyle, and

operational needs; and those that assessed the adequacy of the expert system's

characteristics. This latter group was composed of general expert system

characteristics-such as its ease-of-use and response time-and specific

characteristics-such as the adequacy of the expert system's knowledge base,

graphic displays, hard-copy capabilities, and text.

MOEs assessing the quality of the User-Expert System/Decision Making

Organization interface were divided into two major groups of criteria: those

assessing the expert system's efficiency from an organizational perspective,

and those assessing the system's fit into the organization. Efficiency

criteria included the amount of time it took to use the expert system to

accomplish the task it was supporting (this is distinctly different from its

response time), data management and set-up time requirements, and, pertinent

to the present application, the system's perceived reliability and suppor-

tability under battle conditions, Criteria explicitly focusing on the expert

system's potential effect on organizational procedures, other people's work,

the flow of information, and its value in performing other tasks were used to

asscss the system's fit into the organization for which it was being devel-

oped.

1-31

MOEs assessing the quality of the Decision Making Organization/Environ-

ment interface were grouped into three major criteria: the perceived quality

of decisions obtained using the expert system; the extent to which the expert

system's technical approach matched the technical requirements of the task;

and the extent to which the system improved the quality of the decision-making

process. This last group of criteria was quite broad, ranging from the extent

to which the expert system helped the user survey a wide range of alternatives

and objectives, to the degree to which the system increased or decreased the

user's confidence in the decision.

We now turn to describing the short-answer questionnaire. Specifically,

the questionnaire had 121 questions. Most of the questions assessed the

bottom-level MOEs in Table 1-1; however, 6 questions directly assessed overall

utility (node 0.0 in Table 1-1), 2 questions directly assessed decision

process quality (node 3.3 in Table 1-1), and 3 questions each assessed the

quality of the training sessions and the test scenarios (neither of which are

MOEs). All questions required the participant to respond on a eleven-point

scale from 0 (very strongly disagree) to 10 (very strongly agree), with 5

being "neither disagree nor agree."

There were two or more questicns for each MOE criterion in an effort to

achieve greater confidence in the criterion scores. The number in the

parentheses to the right of each bottom-level MOE in Table 1-1 indicates the

number of questions assessing that criterion. The actual number depended on

the availability of previously written questions assessing the criterion

(e.g., from Sage and White, 1980), the ease in writing "different-sounding"

questions for the criterion, and its depth in the hierarchy.

Half the questions for each criterion were presented in each half of the

questionnaire to eliminate sequence-ordering effects. In most cases, a high

score indicated good performance, but, typically for one question measuring

each criterion, a low score indicated good performance in an effort to ensure

that the participants paid careful attention to the questions. A prototype's

score on a bottom-level criterion was the mean score of the participants'

responses to the questions assessing it. Values for criteria moving up the

hierarchy were the mean score for the criteria below it.

1-32

It is important to make two technical notes at this point. First, by

averaging lower-level criterion scores to obtain upper-level criterion scores,

one is giving each MOE criterion equal weight in the hierarchy. Although it

was quite possible that the participating domain experts may have thought that

certain bottom-level criteria were more important than others, members of the

evaluation team thought it inappropriate to have the (DART) experts differen-

tially weight these criteria at the time of the evaluation because we wanted

to use the same weights for evaluating all five prototypes in order to provide

a common evaluation baseline. And, since the hierarchy of MOEs in Table 1-1

was substantially larger and in many ways different from the MOEs used in Task

II of the project to select the prototypes for development, the evaluation

team considered it inappropriate to obtain relative importance weights from

the sponsoring team prior to (or during) testing and evaluation for fear that

certain developers might consider their prototypes adversely affected. It is

important to note here that subsequent research published by Adelman, Rook,

and Lehner (1985) showed that, in general, the participating RADC engineers

and USAF domain experts differentially weighted the importance of the criteria

* when assessing the overall utility of the prototypes.

Second, there is an alternative approach to obtaining the scores on the

upper-level criteria. Specifically, one could have taken the average of the

scores to all the questions assessing each upper-level criterion. For

example, to obtain a score for criterion 1.2, one could have averaged the

scores for all the questions assessing criteria 1.2.1 and 1.2.2 instead of

just averaging the mean scores for criteria 1.2.1 and 1.2.2 as we did. The

alternative approach would have given greater weight to criterion 1.2.2

because there were more questions for criterion 1.2.2 than for 1.2.1. Again,

because we did not want to differentially weight the MOE criteria, we rejected

this approach.

On the basis of the six questions directly asking about its utility,

DART received a mean score of 8.22 on the 0-to-10-point scale. On the basis

of the evaluation hierarchy, DART received a mean overall utility score (node

0.0) of 7.36. The Expert System/User interface received the highest mean

score (7.81) of the three interfaces. The User-Expert System/Organization

1-33

interface (7.17) and Organization/Environment interface (7.09) received

comparable scores.

The experts' subjective evaluation scores for all of the criteria in the

MOE hierarchy are presented in Table 1-4. From the perspective of the quality

of DART's knowledge base, it is important to note that, relatively speaking,

the experts gave low scores to the expert judgments stored in the system (node

1.2.2.3 - 6.84), DART's technical soundness (node 3.2 - 6.52), and the

framework for incorporating judgments (node 3.3.1 - 6.83). Although these

scores are still good, they are consistent with the results of prototype's

empirical evaluation, which was that DART's knowledge base still needed work.

CHAPTER SUMMARY

The purpose of this chapter was to present a general framework and

approach for testing and evaluating expert systems, and to show how they were

applied in a single case study. The framework provides a paradigm for

considering decision making and, hence, expert systems, within the broader

organizational, problem-solving context within which both exist. The approach

is multi-faceted in that it has three phases: a technical phase for "looking

inside the black box;" an empirical phase for rigorously assessing the expert

system's impact on performance; and a subjective phase for obtaining users'

opinions regarding the system's strengths and weaknesses. Finally, the case

study presented the procedures for, and results of, implementing the general

framework and three-phase approach for an Air Force expert system prototype to

support opposing force activity node identification.

This chapter has been introductory in nature, for we have tried to

emphasize a general perspective that one should keep in mind when testing and

evaluating expert systems. Remember, test and evaluation methods are tools

that can be used to provide sponsoring and development team members with the

feedback they need to improve the judgments and decisions inherent in system

development. For that reason, test and evaluation represents a control

mechanism that keeps a requirements-driven, expert system development proces;,

on track.

0
1-34

do 11 C F-1 Q - : 2: I

10 a r-. aW P. - Wý

fA WL)

u3 w 14 CA m ~

S ca z .9 - www

4c ~ am-. 0W -CW 1 C% Li -t w, 0

=K w .4 -K M- a

-C = N No S

0 0

433 = -l0 wS.'

1A r4 x
O~L)~UJO In. 5W,- J .. W WW.IL2 Lij -

-j -3 -K 3c :W4W n3 c- 4f. W0I

In :a In I K go U

w4 31 -j w w

em~ ~ ~ A~ 3N^ 'tNNWNN 1 & 0 N N N > PIN N,
0 IN! V!~Q W!. W! l.

0 3.-

b. us.

(A (A w
InA

0j- L . - C- K-

0 K4 tL -1 cL A-uj 59 0 2c8 ;:1-3U

It must be remembered that the expert system can be tested on many

different kinds of MOEs. Different testing methods and, thus, types of data,

are appropriate for different MOEs. The specific MOEs one selects for testing

and subsequently evaluating expert systems, should be determined from a

decision-making perspective. What information is needed? Who needs it? What

stage is the expert system development process in? In addition, one needs to

consider how these questions, as well as potentially limiting factors (e.g.,

funds, time, personnel, etc.) affect the selection of testing methods.

Remember, the selection of particular test and evaluation methods is a

decision in and of itself.

The next chapter overviews subjective, technical, and empirical test and

evaluation methods. Prior to doing so, however, we overview the expert system

development process in order to better indicate the appropriateness of

different test and evaluation methods during development. After overviewing

the different kinds of methods, we present a (i) hierarchy of MOEs for

capturing subjective, technical, and empirical data, and (2) general evalua-

tion approach for integrating the tests on these MOEs into an overall assess-

ment of the utility of the expert system under development.

1-36

CHAPTER 2:

LAYING THE FOUNDATION: TEST AND EVALUATION CRITERIA,
THE EXPERT SYSTEM DEVELOPMENT CYCLE, AND AN OVERVIEW OF SUBJECTIVE,

TECHNICAL, AND EMPIRICAL TEST AND EVALUATION METHODS

This chapter builds the foundation upon which the remaining chapters of

this book rest. It has three principal sections. The first section overviews

test and evaluation criteria identified by Adelman and Ulvila (in press).

These criteria are organized into a hierarchy that can be used with Multi-

Attribute Utility Assessment (MAUA) procedures-one of the subjective test and

evaluation methods-to assess how well an expert system is meeting the

requirements of users and sponsors. As was emphasized in the last chapter,

the specific criteria one would use in one's tests and evaluations would

depend on the specific requirements of one's users and sponsors. However, the

hierarchy presented herein contains the wide range of test and evaluation

criteria commonly found in the literature and, therefore, can give one a broad

list of criteria from which to start. In Chapter 7, we provide some guidance

for sifting through this list.

The second section of the chapter overviews the expert system develop-

ment approach. Surprisingly, this "approach" takes somewhat different forms

depending upon who is describing it. Nevertheless, it is epitomized by an

iterative, prototyping approach that is distinctly different from the tradi-

tional software development process, although more recent formulations attempt

to integrate requirements analysis and structured design aspects of the

latter. Moreover, test and evaluation are an inherent part of this iterative

development cycle. To quote Harrison (1989, p. 311), "Note that incremental

development, refinement, reintegration and so on all imply that evaluation is

continuous and inseparable from development."

Evaluation is continuous and inseparable from development because

judgment and decision making are inherent parts of the process. Formal test

and evaluation methods have to be capable of improving these judgments and

decisions and, thereby, the development process, throughout its iterative life

cycle. This requires the application of different test and evaluation

methods, appropriately matched to the information and decision needs of

2-1

different members of the sponsoring and development teams, throughout develop-

ment.

The third section overviews the many different subjective, technical,

and empirical test and evaluation methods. Other chapters in the book will

describe these methods in more detail. Our purpose here is simply to intro-

duce the reader to these methods. Try to keep the broad evaluation perspec-

tive provided by the SHOR paradigm in mind when overviewing these methods.

Remember, at the broadest level, the evaluator's job is to help members of the

sponsoring team decide whether development of an expert system is an effective

option for dealing with hypotheses regarding the current and/or future problem

environment with which the organization will be dealing and, if so, the

general requirements that the expert system will have to satisfy.

Once the development process is underway, the evaluator's job is to

systematically gather, filter, and aggregate data (i.e., stimuli) about the

expert system in order to test the hypothesis. If there is a problem or if it

is not clear what action to take, then options need to be generated, eval-

uated, and selected for correcting the situation so that the development

process can be kept on track. In short, the application of formal test and

evaluation methods helps members of the sponsoring and development teams

monitor the perceived utility of the expert system under development and take

corrective action to increase the probability of its use and effectiveness.

All three classes of test and evaluation methods are applicable during a

formal test and evaluation of an expert system prototype by an outside group,

as was shown in Chapter 1. In addition, however, specific methods are more or

less applicable at other times in the development cycle. In particular,

subjective evaluation methods are applicable early in the cycle because they

represent an explicit means for defining the judgments of members of the

sponsoring team and potential users of the system. For example, Rockmore et

al. (1982) used MAUA, and a MAUA-based cost-benefit analysis, to select among

various types of DSS technology, including expert systems, for subsequent

development. Slagle and Wick (1988) used a subjective method analogous to

MAUA to evaluate candidate expert system application domains. And Bahill et

2-2

. al. (1988) used MAUA to address the valuative and technical judgments inherent

in selecting expert system shells.

Technical test and evaluation methods are also applicable during design

and development. For example, as part of the knowledge elicitation and

representation process, one should routinely assess the adequacy and accuracy

of the knowledge base. This can be accomplished by using (1) static testing

to help assess the knowledge base's logical consistency and completeness, and

(2) experts, both those participating in development and those acting as

evaluators, to help assess the knowledge base's functional completeness and

predictive accuracy. Ideally, the test and evaluation team will also have

access to "ground truth" data for assessing predictive accuracy, as illus-

trated in the DART evaluation. In addition, traditional software test and

verification methods can be used to help assess the "service" versus "compete-

ncy" requirements of the expert system. These methods have considerable

applicability (a) prior to programming code for verifying requirements

analysis documentation and functional models of the software), and (b) once

the development process is well underway, during system packaging and trans-

fer.

In contrast to technical test and evaluation procedures, which focus on

how well the system was developed, empirical test and evaluation methods focus

on how well decision makers can perform their task(s) with (versus without)

the system. From an iterative, prototyping perspective, it is anticipated

that experiments will be conducted throughout development as a means of

objectively measuring the performance of the expert system and testing

hypotheses for improving it. After transferring the expert system to the test

organization, experiments, quasi-experiments, and case studies can be used to

evaluate performance in the actual or simulated organizational setting.

Remember, the expert system may be addressing only part of a much larger

organizational decision. Even if the technical evaluation of the knowledge

base shows that it has perfect predictive accuracy, the expert system's

contribution still may not ensure better decision making within the larger

organizational setting.

2-3

TEST AND EVALUATION CRITERIA

Table 2-1 presents a hierarchy of test and evaluation criteria. As

will be discussed later in Chapter 3, this hierarchy can be used in conjunc-

tion with MAUA scoring and weighting procedures to evaluate the overall

utility of an expert system to users and sponsors. Since the goal of develop-

ers and sponsors of expert systems (or for that matter, any type of software)

is the creation of high-utility technology, the ultimate goal of test and

evaluation is to determine (and facilitate) the extent to which this goal has

been achieved.

The hierarchy in Table 2-1 has five branches. The first presents

criteria for assessing the adequacy of the knowledge base or, as Rushby (1988,

p. 75) has called them, the "competency requirements" of an expert system.

Specifically, Table 2-1 lists different criteria for assessing logical

consistency and completeness, functional completeness, and accuracy (and

adequacy). Chapter 4 will focus on technical evaluation methods for measuring

these criteria. In particular, we will overview the use of static testing

methods for assessing the logical consistency and completeness of the know!-

edge base, and the use of domain experts, in conjunction with empirical

evaluation concepts and methods, for assessing the functional completeness and

predictive accuracy of the knowledge base.

The second branch is the correctness of the inference engine. Sponsors

and users need to know that the inference engine has no errors in how it

accesses the knowledge base and in how it propagates rules and probabilities

(or other quantitative representations of uncertainties) in reaching conclu-

sions. Testers should not assume that the inference engine has no errors.

Some expert system shells do not provide test data with their documentation.

The third branch addresses conventional software requirements, referred

to as "service requirements" by Rushby (1988, p. 75) within the context of

expert systems. Conventional software test and verification criteria are

important for expert systems too, particularly if the expert system has to be

embedded in, or interfaced with, more conventional software modules. Service

requirements include information about computer system design and portability

2-4

r- Zr IL L

C,,0,

z LU

K 'i L) LL0

-i0 < 00

wt 8

Cu Zr cc
0z 0 000L C
cc 11a c

> 0)

- ~C)

0 C_ 0

> L) I.- I

0)

z z (

w waQ: 5

Q L ~ uOU D U

0 1a a c 2 X4 L 0

0) Q L)z C, C3

0-) wU L

0LL w

z ~ ~ . U,5 W L)jC

nL z2 U0 :-F RJ -W S sL
I-.j

LLJ ý-., , ".'. 5 f
*- z

(i.e., transferability to other hardware and software environments), computer

usage (e.g., set-up time, run time, space requirements, etc.), system integra-

tion, operator skill requirements, and documentation.

The fourth branch in Table 2-1 contains performance criteria, -. kich are

decomposed into criteria based or ground truth (or experts' ratin-s of

decision quality), and the judgments of users. Both "ground truth" and

"judgment" categories focus on the quality and speed aspectr of performance.

As Cats-Baril and Huber (1987) have shown, users' judgments of system perfor-

mance do not always agree with more objective data. Consequently, although it

is substantially more work, the use of ground truth data is urged when

assessing performance. Moreover, we recommend here (as we will throughout the

discussion of empirical evaluation methods) that experiments with aided and

unaided corditions be relied on prior to transferring the system to its

operational environment in order to rigorously assess performance with and

without the system. Field experiments, quasi-experiments, and case studies

should be relied on after transferring the expert system to its operational

(or operational teýt) environment.

The usability branch is composed of criteria based on evaluators'

observation of participants working with the system and participants' judg-

ments of it. In conjunction with observation methods, users' key strokes can

be recorded in an effort to better understand the extent to which the par-

ticipants actually use the expert system during the problem-solving task, the

manner in which they use it within the context of the more familiar procedures

typically found in their job setting, and the specific features of the system

they use most frequently. In addition, questionnaires analogous to the one

used in the DART test and evaluation can be used to obtain users' opinions

regarding their confidence in the expert system's recommendations, its ease of

use, the acceptability of the person/machine interaction process, its scope of

application, the adequacy of the system's explanations for its recommenda-

tions, the system's organizational impact, and specific input-output con-

siderations.

The above criteria can be used to assess the adequacy of an expert system

from the ucers' (and sponsors') perspective. To do so, one must test and, in

2-6

turn, score the expert system on each criterion that is considered important

(i.e., given a nonzero, relative weight) by the users. Thus, each criterion

represents a reference point that can be used to assess the system's progress

on that criterion throughout development. For example, one would like to see

a smaller number of redundant rules, a higher percentage of accurate predic-

tions, better overall performance by the user, more favorable opinions about

the interface, etc., as the system matures. Graphs can be developed to track

trends on each criterion over time and, thereby, facilitate management of the

test and evaluation process.

As we mentioned in Chapter 1, we will use the term "test" to refer to

the process of measuring the expert system's performance against evaluation

criteria, such as those listed in Table 2-1. The type of testing method to be

used will depend on the criterion against which the expert system is being

tested. For example, one would ise (1) methods implementing the rules of

logic to test the logical consistency of the rules in the knowledge base; (2)

empirical data collection methods to test the predictive accuracy of the

knowledge base against the judgmental accuracy of expeits or ground-truth

measures of accuracy; (3) observation methods to record the features of the

expert system that users routinely use when solving test cases; and (4)

subjective methods, such as questionnaires, to assess users' opinions of the

system's strengths and weakness. That is why a multi-faceted approach is

necessary to comprehensively test and evaluate expert systems.

Central to the concept of evaluation is the concept of the utility or

importance of the test results to the sponsoring team. For example, if the

sponsoring team's primary requirements were that the expert system's (a)

knowledge base be logically consistent, (b) functionally complete for the

domain of interest, and (c) highly accurate in its predictions, then they

probably could care less if its user interface was easy to use. As long as

the expert system tested high on its primary requirements, then it would be

evaluated as performing well. As rhis example illustrates, the process of

aggregating all the different tests in order to reach an overall conclusion

about the expert system is inherent in the term "evaluation," One of the very

nice things about MAUA as a test and evaluation method is that it provides

explicit, defensible procedures for converting the test results on many

2-7

different criteria into one common scale; that is, it provides a method for

converting all the "apples and oranges" into a single overall evaluation.

We will briefly overview in Chapter 3 how MAUA procedures can be used to

evaluate an expert system on the criteria shown in Table 2-1. We want to

close this first section, however, by again emphasizing that evaluation is

inherently a subjective process. Relative importance weights represent

personal judgments. There is no mechanical procedure that can replace this

fact or the use of other decision rules. Moreover, these judgments are

appropriately the province of the decision makers, or their representatives,

who are sponsoring the development of the expert system, and not the testers.

For it is the sponsors of the development effort that have to make the final

decision (i.e., evaluation) as to whether or not the expert system will

fulfill their needs. Suc!, a perspective is, of course, quite consistent with

the SHOR paradigm.

THE EXPERT SYSTEM DEVELOPMENT APPROACH

Perhaps the best way to begin a description of the expert system

development approach is to first present its counterpart, the "conventional"

system design approach. As Andriole (1989) points out, there are various

representations of the conventional approach. The one by Hice et al. (1978),

shown in Figure 2-1, is an excellent example because it emphasizes the

comprehensive, structured, and sequential nature of the conventional approach.

Its strength is its procedural comprehensiveness. Its weakness, however, is

its failure to extensively involve the user throughout the design process, and

its relative inflexibility, which is best illustrated by the lack of feedback

loops between the seven steps (and particularly the first two) in Figure 2-1.

It is important to note that this presumed weakness is not always a weakness;

it depends on the nature of the problem and tasks for which the system is

being developed. The conventional approach can be very effectively applied

when the problem and tasks are easily identified, defined, and structured. It

is only when such clarity is elusive that other approaches need to be consid-

ered by developers.

2-8

0, wj

uu .
W 4

-mow

won mn m , m V^ m o

. nI n I--.~.L

CK uui aa

3j 0

La 9! 1.. _- w

U.C- feQ ij cgs x IW

3w WZ.I W~ = W--
FA wo6 CZw3

LU W 0- w ofU a. u gw= "
N in9wii

c (A 'I I.- -C-win 1.'~ a - !9-aatm OnMi 09 b 6.-w A u ne W L

0 N L' i.. .- 3'~m .La

N9LUC C amwz w~wauaww %W U
fm'D'. mc? in 0 NV

INS

- U.

ins wU in .~a

P- I - R 0 W

in z#~ urn an- *-UbZ' 9

.- ý. 0 CL- - u 1
ww ~ L in 66 0 0. .z

w- L*, La u mfaw
-~L #n.muaw a.

a.a 8 in9 UJ.9).-i& 0 -

-~c I. aU tn Wu 4A aý a. i a. w wa. a ~a
& N A M- w n 0 .- 3.. -4 0,a0WWOc

2-9c x)I u0L

-~. u -xjs

3o0 -K

LU L-A CA

U U -C OC w

OJ t I I a- -

u~ (A~(
atQu a-mP.- j

's CA 0.

L9K WLUL KM.

.- u~ F .~ ' I-0 0.u

&U0

43c

i. I-M"

in az - - KI.-

or w L4 =La W M)-

""I WI W.U ww

-CK Wu K

0. -K L" - C '

coax-g- W>W=

00 aO K- 10%01 le

'(m 51W wm -o

U3 o 0
.0 x0 ae' z0 v0 4K t

o (a = $-- (A K CA
X Id U I.- " uLU

I- I- .C u
:3 x. An ca ;$- ccC

W 0 LU. LU

Miu W.3 '(I

7D ix 0 V) cc

w ~ ~ ~ I w A4UwwSUa LU S.-m S.

(A I LU 0 m K W0 o am

a~'o a wsu .O- -u SJ 9'?-

2-10(

Clarity of problem and task definition and, most importantly, structure,

is typically elusive when starting an expert system development effort. The

reason is that expert knowledge and reasoning represents the essential task

structure of an expert system, and this is difficult to define and understand

at the start of the development effort. To quote Harmon et al. (1988), "It's

not that experts will not explain what they do, it's that they can't.

Knowledge engineers must work patiently through a discovery process with human

experts to develop and then enhance the system. No neat phases result in

products that will not be reconsidered in subsequent phases. The original

rules the knowledge engineers develop may later be rewritten entirely or

dropped, as the experts and knowledge engineers gradually refine their

understanding of the knowledge that must go into the knowledge base." To

quote Cholawsky (1988, p. 42), "The conventional wisdom about this process is

that expert systems development is necessarily an experimental process." It

is one that emphasizes iteration, test and evaluation, and subsequent refine-

ment.

For the above reasons, expert system developers and theoreticians have

emphasized the application of prototyping methods with corresponding changes

in the development process, The purpose of prototyping is to quickly develop

a working model of the expert system and get the expert's and user's reaction

to it in order to find out if the development process is on track. To quote

Cholawsky (1988, p. 42), "Application is quickly followed by some initial

prototyping effort. The prototype often serves as a combined feasibility

study, design docume3nt, and functional specification effort. As the problem

area becomes better understood, more involved prototype efforts are undertaken

with more complex implementation, testing, and evaluation. The development

team iteratively enhances each prototype until an operational system evolves.

In the final development phase, the team is challenged to maintain and enhance

end results of the prototyping efforts, transforming the mature prototype into

an operational system."

Figure 2-2 presents Cholawsky's (1988, p. 44) representation of the

"traditional expert system development methodology."

2-11

APPLICATION SELECTION

-- " PROTOTYPE EFFORTS

* IMPLEMENT

@ TEST

* EVALUATE

* ITERATE

[MAINTENANCE &ENHANCEMENTI

Figure 2-2: Cholawsky's (1988) Representation
of the Traditional Expert System Development Methodology

Figure 2-3 presents Harmon et al.'s (1988) representation of the approach. As

can be seen, Harmon et al. emphasize the constant interaction with the experts

and users that is inherent in the prototyping approach. Constant interaction

with users during prototyping is just as important as constant interaction

with experts for two reasons. First, "users don't know what they want or

need, but they do know what they like." And, second, "it is a lot easier to

answer the question 'How do you like X?' than to answer the question 'How

would you like X?'" (Hurst et al., 1983, p. 128). These reasons hold even

when the participating expert is the designated user of the expert system.

Consequently, in contrast to the conventional development approach, proto-

typing greatly expands the users' involvement in the development process by

putting them in the explicit role of evaluating actual working representations

of the expert system, and indicating how they should be modified, throughout

development.

2-12

O I ,NLYZE POoBLEM

INTERACT

WITH
TEST WITH CASES USERS

AND

EXPERTSEXPAND SYSTEM

TEST WITHC ES -

INSTALLATION

LMAINTNANCE

Figure 2-3: Harmon et al.'s (1988) Representation
of the Traditional Expert System Development Methodology

In the past, expert system developers have been prone to taking a "we

versus they" attitude when comparing their system development approach to the

more conventional one. However, as we mentioned in Chapter 1, that is

beginning to change because, for all its strengths, expert system development

efforts emphasizing a totally "experimental" prototyping approach have not

been as successful as we would like to believe. There have been too many

failures because expert system developers have failed to consider the require-

ments issues of critical concern to sponsors. To quote Cholawsky (1988, p.

44), "In general, prototypes ignore both deployment issues (such as cost-

benefit analysis, scaling up to operational size, and handling real-world

data) and transition issues. ... The development team argues that business

issues should be temporarily tabled; if the problem cannot be solved techni-

cally, it does not matter if it is justified from a business sense. This

argument has a fatal flaw. Even if the life underwriting decisions of the

2-13

expert system exactly match the underwriter, the system will not be built if

it lacks an adequate payback." Furthermore, Constantine and Ulvila (in press)

have found a number of cases where the development cycle was to "prototype

forever," never reaching an operational system.

As we mentioned earlier, a more requirements-driven development process

is evolving. This process emphasizes the importance of prototype planning

that explicitly identifies objectives and evaluation criteria for determining

prototype success prior to development as a means of keeping development on

track. In addition, it emphasizes conventional software design activities,

not just knowledge engineering. These design activities provide a structured

approach for addressing, during prototype development, many of the deployment

and transition issues that have been a problem for successful prototype

implementation.

Figure 2-4 presents Cholawsky's (1988, p. 47) "new approach to expert

system development." Her approach divides prototyping activities into two

groups. The first group emphasizes prototype planning. It includes specify-

ing the objectives and secondary issues (i.e., subproblems) for the prototype,

the evaluation criteria for "determin[ing] prototype success," and a develop-

ment schedule with milestones and deliverables. The second group emphasizes

prototype development. It includes a predesign stage for understanding the

domain vocabulary, a logical architectural design stage for analyzing the

reasoning and representation paradigms used in the domain, a physical ar-

chitectural design stage for considering hardware and software issues, an

implementation stage for programming the knowledge engineered during the

logical architectural design stage, and an evaluation stage for explicitly

testing the prototype against the evaluation criteria specified during

planning. Iteration is assumed throughout the various stages, although it is

more controlled than in the traditional prototyping approach. Assuming that a

successful prototype is developed, efforts are then directed toward developing

the operational system, and maintaining and enhancing it.

Cholawsky is not alone in proposing an expert system development

approach that moves toward integrating aspects of the more conventional syste:

development approach into prototyping. Figure 2-5 presents Weitzel and

2-14

APPLICATION SELECTION_

PROTOTYPE PLANNING

o Objectives
s Sub-problems
@ Evaluation criteria
* Schedule and milestones

PROTOTYPE DEVELOPMENT

* Pre-design
@ Logical architectural design
* Physical architectural design
* Implementation
o Evaluation

OPERATIONAL SYSTEM
DEVELOPMENT

IMAINTENANCE &ENHANCEMENTf

Figure 2-4: Cholawsky's (1988) "New" Approach
to Expert System Development

0
2-15

IDENTAIL DEASIGNL

Refeefne

_ _ _EPUA CDESG

Refiner TEST REASONING

MAINTAIN &VA ENHAN ReIdenfiaine

Figure 2-5: Weitzel and Kerschberg's (1989)
Representation of the "~Knowledge- Based
System Development Methodology Flow"

2-16

. Kerschberg's (1989, p. 599) "knowledge-based system development methodology

flow." Although their approach emphasizes iteration, it also emphasizes

conceptual and detailed design prior to coding, as well as substantial testing

and evaluation. Figure 2-6 presents Rook and Croghan's (1989, p. 589)

"knowledge acquisition activity matrix." As can be seen, they have tried to

integrate the various knowledge-engineering activities with the steps in the

conventional system development cycle in an effort to move effectively and

efficiently from the laboratory to the operational environment. And Figure

2-7 presents Andriole's (1989, p. 31) "prototyping design blueprint.'

Although his approach emphasizes modeling and iteration, it also emphasizes

aspects of the more conventional system development approach, particularly

requirements analysis, hardware and software selection, and system design,

packaging, transfer, and evaluation.

Figure 2-8 presents Wolfgram et al.'s (1987, p. 17) "stages of expert

system development." This representation is quite similar conceptually to

Cholawsky's (1988). First, Wolfgram et al. also distinguish between prototype

planning and development. Planning issues, such as the specification of goals

(i.e., objectives and subproblems), evaluation criteria, and explicit require-

ments for guiding development, are part of Identification and Definition, the

first stage in their development approach. Second, prototype development and

construction of the operational version of the expert system are distinctly

different stages of development-stages 2 and 3, respectively. Moreover,

prototype development in Wolfgram et al's approach incorporates many of the

same requirements and design issues Cholawsky addresses in her approach. All

of the issues are directed toward designing the "structure" for the operation-

al version of the system.

Regardless of the various representations of the expert system develop-

ment approach, test and evaluation is an inherent aspect of it. In fact, test

and evaluation activities are assumed; they are simply taken for granted as

part of iterative development. Consider Wolfgram et al. (1987, p. 19), for

example. "Once the prototype is in place, it is a working model, or submodel,

of the planned complete expert system. It is at this stage that, after

careful testing and review, a decision is made whether to continue the project

* and construct the complete expert system or abandon the project." Testing and

2-17

OPERAT IONAL ENVI RONMENT

- - ----

SIMULATED OPERATIONAL ENVIRONMENT

- -- -- -- --- - - - - -

LABORATORY ENVIRONMENT

0I -- PROBLEM DEFINITION

---------------- ~ REQUIREMENTS ANALYSIS

-- If ' ' . --- e -- FUNCTIONAL SPECIFICATION

/ , / / SYSTEM4 DEVELOPMENT

- - EST AND EVALUATION

01 SYSTEM MAINTENANCE

"S- ;: ", g 0- 0-
WI u UJ it; L

cot WOU i

-j~

Figure 2-6: Rook and Croghan's (1989) 'Knowledge Acquisition Activity Matrix*

2-18

_ zw

F o
z4

0 a: 4L I

P: wz z
0 c 0i a: I-

W ~ ~ C 4Z o z r" a C

a:~~ w'w 0 2
0~ 0 Z .) LL4

w) C? L2. i ~ Uz 0Z <

0otzý 0 w a (3 o
LLI, P-c

00 Z 0
L- W - 211

-6 < Low CL 0
z2 1 I 7

ý 0 U0

o 0 O Zo wQIA
i i0 0 w F

a: wa z < _
0 LL Zu X0 lw -W z w
,z _1 w 0 z - 2 4

- WD
a -<0P c

T x C 20m9
Lu:: W'5-7 w D (fi 4A.-J

4.0

LLI .2-19

Identification aResources
end : Goals

Definition * Criteria

Requirumoons 2 _ Knowledge Discovery

Development eknwee
cof I :rNmOll

Pwtoype e Kardwafe/SoftwSV* Selectio
Sinw~tie i denlmestiof *I Constraints

Stutr 3
a Knowledge Acquisition

ICCorsvructiofl a Knowledge Base Fabrication
& Deaialed Knowledge Structure

Formulation4

Testing
and a Validation

Execution 5

F Inte rtion 9 Operational Acceptance
an 9 Education

ImplemenWrtatIon s Training
Opeaution 6

*Dynamic Environment
Maintenance -0Domain Expansion

N euristi Improvement

Figure 2-8: Wolfgram et al.'s (1987) "Stages of Expert System Development"

2-20

evaluation are the critical activities upon which the fate of the project

rests, yet Wolfgram et al. fail to indicate its presence in their pictorial

representation of the development process.

Figure 2-9 presents a revised version of Wolfgram et al.'s representa-

tion of the expert system development process, but now with testing and

evaluation explicitly added to the process. In particular, we have added test

and evaluation boxes after prototype development (stage 2), integration and

implementation (stage 5), and maintenance (stage 6). Testing and evaluation

obviously occurs at the end of each of these development stages. For example,

in addition to testing and evaluating the prototype, one would obviously test

and evaluate the operational version of the expert system (stage 5); one does

not simply hand it over to the host organization and walk away from it after

so much time and money has been spent in developing it. Similarly, one tests

the effects of any changes that one makes to the system during maintenance for

fear that an enhancement might result in an unanticipated error or problem

All this test and evaluation goes on informally in most expert system

development efforts. Indeed, informal test and evaluation is a pervasive

activity in development. Webster's dictionary (1966) uses the word "examine"

as part of its definition of both "test" and "evaluate." As developers, we

are always examining the system. We're always trying to find things here and

fix problems there in order to improve our product.

The reason we have added the test and evaluation boxes to the development

approach is to formalize that activity. Moreover, good test and evaluation is

not epitomized by the informal examination of the system. It is epitomized by

the use of explicit and appropriate methods for helping members of the

development and sponsoring teams make the numerous judgments and decisions

inherent in expert system development. Remember, test and evaluation repre-

sents the control mechanism for providing the feedback that keeps the develop-

ment effort on trac':. This point is clearly illustrated in Andriole's (1989)

prototyping design blueprint, Figure 2-7. The ultimate goal of test and

evaluation is to help senior-level decision makers in an organization decide

whether the option of developing and implementing an expert system, either

singularly or in combination with other actions, is an effective organization-

2-21

11

IDENTIFICATION & DEFINITION

Requirements 2

" LOPMENTOFPROTOTYPE

(D 2a
c -TESTING & EVALUATION

Structure 3

CONSTRUCTION

0 E
• Formulation 4

<gcc
L- TESTING & EVALUATION

0 Execution 5

INTEGRATION & IPLEMENTATION

CC -TESTING & EVALUATION

Operation 1 6

-[MAINTENANCE

E

Cr

_.-0 TESTING & EVALUATION

Figure 2-9: Modification of Wolfgram et al.'s Representation
in Order to Emphasize Test and Evaluation

2-22

al response for dealing with their present or future problem Pnv~ronment,

Once the development process is underway, the application of formal test and

evaluation methods permit one to monitor the perceived utility of the expert

system under development, and take corrective action to increase the probabil-

ity of its use and effectiveness.

At this point the reader may be thinking that emphasizing formal tests

and evaluations will increase development costs. In fact, it might. Formal

testing and evaluation is an expensive process. Although we do not have data

for expert systems, Hetzel (1984) points out that direct testing costs for

major software systems approach 25 percent of the development costs. Direct

testing costs include reviews, program testing, systems testing, acceptance

testing, test planning and design, computer time, and test resources, both

human and material. This is obviously not a trivial investment. To quote

Gould and Lewis (1985, p. 306), "... testing still has a price. It is nowhere

nearly as high as commonly supposed, however, and it is a mistake to imagine

that one can save by not paying this price. ... If it is not done in the

developer's lab, it will be done in the customer's office."

The failure to systematically test and evaluate a system during its

development oftcn results in "indirect costs," as Hetzel (p. 174) calls them.

Indirect costs include "rewriting programs, recovery, corrective action costs,

rekeying data, failures, analysis meetings, debugging, retesting," etc.

"Indirect testing costs, or the costs of poor testing, are usually at least

twice the direct costs and may be spectacularly higher." Moreover, indirect

testing costs are substantially more expensive later in development. For

example, empirical research (e.g., Rushby, 1988) indicates that errors due to

faulty requirements are between ten to one hundred times more expensive to fix

if detected during implementation than during requirements analysis. Given

our track record, there is no reason to assume that these estimates are any

different for expert systems. Of course, these costs pale by comparison to

the potential costs of a catastrophic decision or even the costs of a system

that is ignored or unused because of correctable problems that could have been

detected by testing. All of this suggests that formally incorporating test

and evaluation into development is a wise investment.

2-23

SUBJECTIVE, TECHNICAL, AND EMPIRICAL TEST AND EVALUATION METHODS: AN OVERVIEW

We now overview the various subjective, technical, and empirical test

and evaluation methods. The methods will be discussed only at a general level

here. More detailed discussions and illustrations will be presented in later

chapters.

Subiective Test and Evaluation Methods

The goal of subjective tests and evaluations is to assess the expert

system from the perspective of potential users and sponsors. This is accom-

plished by identifying measures of effectiveness (MOEs) that will provide the

information required to assess the system's utility. The explicit identifica-

tion of MOEs is particularly important at the beginning of the development

process because they represent (a) reference points for the development team

to use, and (b) criteria for evaluators to monitor in order to assess whether

the development process is on track.

Gaschnig et al. (1983, p. 258) have emphasized the importance of

developing NOEs early in the expert system development process. "It is

important for system designers to be clear about the nature of their motiva-

tions for building an expert system. The long-range goals must also be

outlined explicitly. Thus stage 1 of a system's development, the initial

design, should be accompanied by explicit statements of what the measures of

the program's success will be and how failure or success will be evaluated

[italics theirs). It is not uncommon for system designers to ignore this

issue at the ottset, since the initial challenges appear so great upon

consideration of the decision-making task that their expert system will have

to undertake. If the evaluation stages and long-range goals are explicitly

stated, however, they will necessarily have an impact on the early design of

the expert system."

Multiattribute Utility Assessment. Riedel and Pitz (1986, p. 986), as

well as others (e.g., Adelman and Donnell, 1986; Andriole, 1989; Keeney and

Raiffa, 1976; Ulvila et al., 1987), have pointed out that multiattribute

utility assessment (MAUA) "... provides a formal structure for conceptualizing

2-24

MOEs, a mechanism for both decomposing the global MOE into its component

dimensions and for reintegrating them to yield one summary measure of value."

When applying MAUA to the evaluation of expert systems and other types of DSS,

the system is conceptually decomposed into attributes that can be defined well

enough so that one can obtain either subjective or objective measures (MOEs)

of how well the system performs on each attribute. This decomposition

typically proceeds through the creation of a value hierarchy, such that the

global attribute entitled "the overall utility" is decomposed into major

categories of attributes, which are further decomposed, and so forth, until

one is reasonably confident that one can define and obtain precise, reliable,

and valid measures (or scores) of the system on each attribute. Table 2-I

presents the MAUA value hierarchy developed by Adelman and Ulvila (in press).

Reintegration typically occurs within MAUA through the application of

utility functions and relative importance weights. An expert system is

usually evaluated on many different attributes, all of which need to be

defined as precisely as possible. The natural measurement scale for an

attribute depends on the nature of the attribute. For example, the scale for

an attribute could be in objective units (e.g., minutes for time) or subjec-

tive units (e.g., how strongly a subject likes a feature) depending on the

attribute. Nevertheless, a common scale is required to compare scores on one

attribute with scores on another-that is, "apples with oranges"-and, by so

doing, obtain an overall score for the system.

A utility scale, which conceptually measures psychological value or

satisfaction, mtets this requirement. Utility (or value) functions are used

to translate system performance on an attribute into a utility score on that

attribute. Then, relative importance weights (or other forms of decision

rules) are used to assess the relative value of a utility score on one

attribute with the utility score on another and, thereby, obtain an overall

utility score for the system. [This weighting procedure is formally valid if

additivity assumptions are met; see Keeney and Raiffa (1976). An assumption

of additivity is generally a reasonable approximation; see Edwards (1977).]

MAUA was used to provide the subjective evaluation of DART described in

Chapter 1. As you will remember, "decomposition" was illustrated in Table I-

2-25

1, which presented a multiattributed hierarchy that decomposed the global MOE

(the overall utility of the expert system) into three component dimensions:

the user/expert system, user-system/decision making organization, and or-

ganization/environment interfaces. Each of these three interfaces or branches

in the MAUA hierarchy, were further decomposed into bottom-level attributes

(or MOEs).

"Reintegration" was achieved by a three-step procedure. First, the

experts completed a questionnaire that essentially scored DART on each of the

bottom-level attributes. Second, we assumed a positive linear utility

function for each bottom-level attribute, thereby conceptually converting the

performance score on the attribute into a utility score on that attribute.

And, third, we used equal weights moving up the hierarchy to combine the

(utility) scores for lower-level attributes into more global scores at the

next level of the hierarchy until we obtained an overall score on the global

MOE.

The Dollar-Equivalent Technique. The dollar-equivalent method is a

means for translating all benefits, as well as costs, into dollar values

instead of utilities, as in MAUA. In the dollar-equivalent method, all

benefits are converted into dollar equivalents by "pricing out." Pricing out

is a judgmental technique that is much the same as the procedure for convert-

ing performance scores into utility scores in MAUA. As Huber (1980, p. 83)

points out, the dollar-equivalent method is "... a special case of the more

general ... MAU model technique." Consequently, the appropriateness of the

method depends on the defensibility of the conversions to monetary equiva-

lents. Relatedly, traditional cost-benefit analysis represents all benefits

and costs in dollars, and then uses the ratio of benefits to costs as the

basis for decision making.

Decision Tree Analysis. Decision tree analysis is a formal method for

combining uncertainties, which are represented as probabilities, with util-

ities when evaluating alternative decision options. Decision tree analysis

often uses subjective probabilities of scenarios to represent, at a collect-.-

level, the uncertainties inherent in the decision-making situation facing

members of the sponsoring team. These scenarios represent the members'

2-26

hypotheses regarding alternative states of the world, a perspective that is

perfectly consistent with the SHOR paradigm. The overall expected utility of

different organizational options, including whether or not to develop an

expert system, depends on the (a) probabilities assigned to the various

scenarios, and (b) the utility of each of the options for each of the sce-

narios.

Other Subjective Test and Evaluation Methods. A fourth subjective

method is a MAUA-based cost-benefit analysis that uses optimization procedures

to identify the set of options that provides the greatest utility at specific

(total) levels of cost (see Ulvila and Chinnis, in press). As Adelman (1990b)

pointed out, this approach is particularly appropriate when the funding

horizon is uncertain for identifying the best (a) set (or suite) of decision

support technology (and/or other organizational options), and (b) configura-

tion of components for a particular system at different levels of dollar cost.

For example, Rockmore et al. (1982) used this approach to select DART and four

other decision support systems for enhancing U.S. Air Force tactical decision

making. However, to the best of our knowledge, this subjective method has not

been used to evaluater potential expert systems.

Although we will not describe them here, there are other subjective

evaluation methods that have been used to test and evaluate expert systems.

For example, Liebowitz (1986) has used the Analytical Hierarchy Process

developed by Saaty (1980), Tong et al. (1987) have proposed a frame-based

approach, and Klein and Brezovic (1988) and Slagle and Wick (1988) have used

subjective test and evaluation approaches analogous to MAUA. The interested

reader is urged to consider them.

Discussion. An important characteristic in common among the subjective

test and evaluation methods described herein is that they develop an analyti-

cal model to represent the judgments of the participating decision makers.

One of the principal advantages of a "model" is that it permits sensitivity

analysis; members of the sponsoring team can change their judgments and see if

the changes have any effect on the results. For example, does changing the

relative importance placed on an attribute (e.g., response time) in a MAUA

suggest that a different alternative design for the expert system be imple-

2-27

mented? This is an important capability early in the expert system develop-

ment process because, consistent with the SHOR paradigm, there may exist

considerable interpersonal disagreement among members of the sponsoring team

due to both information input uncertainty regarding the hypotheses and

consequence-of-action uncertainty regarding options.

Moreover, both the MOEs and methods used to convert performance measures

into MOEs developed early in the development process will be used during and

after development to evaluate the prototypes and final expert system, respec-

tively. '.1 that will change with time is basis for these judgments, both in

terms of the specificity of the option (i.e., the expert system) and, for

certain MOEs, rt,n availability of empirical and technical performance data.

Consequently, it is important to obtain consensus among the sponsoring team,

which, it is assumed here, includes representative user(s) of the expert

system, early in (if not prior to) the development process. To quote O'Connor

(1989, p. 103), "These attribute trade-offs are not after-the-fact evaluation

issues. Rather, they are decision issues relevant to the design problem and

should be resolved before detailed system design and testing take place."

There is a long line of research (for a review, see Delbecq et al.,

1975) demonstrating that, more often than not, structured facilitation

procedures can focus a group's discussion, thereby increasing the probability,

not only of a moct accurate final position, but one that is more strongly

supported by the group. The subjective methods described above further

improve discussion by letting members of the sponsoring team focus on a

quantitative model instead of each other. Eils and John (1980), for example,

found that groups using MAUA procedures in conjunction with group facilitation

procedures tended to make more accurate decisions than groups using only

facilitation procedures.

Better discussion occurs because group members have to define their

thought processes in order to provide the numerical inputs required by the

model. At the same time, however, the model permits group members to retreat

from their original position, or more strongly voice it, on LhR basis of thc

numerical outputs and sensitivity analyses. Directing the discussion toward

aspects of the model helps remove some of the "personal" focus of group

2-28

decision making. As was mentioned earlier, explicit identification of MOEs

and procedures for converting performance scores into a global HOE, represent

reference points for the development team to use when developing the expert

system, and criteria for the evaluator to monitor in order to assess whether

the development process is on track.

The above discussion has focused on the applicability of subjective test

and evaluation methods early in development in order to define (a) what the

expert system has to be capable of doing in order for the decision maker who

is using it to consider it to be a good system, and (b) whether development of

such an expert system is feasible given the financial, time, personnel, and

other constraints operating in the situation. However, subjective test and

evaluation methods are applicable throughout the development effort. The

reader should remember that subjective methods like MAUA, cost-benefit

analysis, decision analysis, and the different variations on these themes were

all developed to help decision makers systematically evaluate decision

options, regardless of what they might be. Consequently, they are potentially

applicable anywhere in the development process where members of the develop-

ment team need to evaluate one option against another. In those areas

important enough to warrant their use, they represent an audit trail for

indicating why one action was taken versus another.

Finally, we have tried to stress the importance of using subjective test

and evaluation methods to evaluate whether the prototype(s) and final,

operational version of the expert system are consistent with the initial goals

and objectives of the sponsoring team. It is important to point out that

objectives, and particularly the tradeoffs among them, can change during the

course of the development process either because of the changing environment

with which the sponsoring team is dealing, changes in the membership of the

sponsoring team, the insights gained during the development process regarding

what is technically feasible/infeasible, etc. Subjective evaluation methods

provide an effective mechanism for representing these changes and, through

sensitivity analysis, estimating their implications for the development

process.

2-29

Technical Test and Evaluation Methods

Three classes of technical evaluation methods are, in turn, briefly

overviewed in this chapter: (a) static testing for assessing the logical

consistency and adequacy of the knowledge base; (b) using domain experts for

assessing the functional completeness and predictive accuracy of the knowledge

base; and (c) conventional software test and verification methods for assess-

ing the service requirements of the entire system.

Logical Consistency and Completeness. As Rushby (1988) points out, the

concepts of static testing in conventional software testing can be readily

extended to expert systems because, in both instances, the focus is on

detecting anomalies in the program without actually executing it on test

cases. To quote Rushby (p. 92), "An anomaly in a program is nothing more than

an apparent conflict between one indication of intent or purpose and another

... " The types of anomalies of particular interest in expert systems pertain

to the logical consistency and logical completeness of the knowledge base.

Researchers (e.g., Kirk and Murray, 1988; Nazareth, 1989; and Rushby,

1988) have developed taxonomies of anomalies in the knowledge base that are

amenable to static testing. Some of these anomalies are listed below. In

doing so, we assume that the knowledge base is represented in the form of "if-

then" production rules or can be transformed into such a representation. As

Nazareth (1989, p. 257) points out, "For systems that employ more involved

representation schemes, the nature of the verification task may differ."

(However, Hayes (1981) has shown the consistency between rules and frames,

which indicates that similar concepts are applicable to frame-based knowledge

representation.)

Redundant Rules. Individual rules or groups of rules that essen-
tially have the same conditions and conclusions.

Subsumed Rules. When one rule's (or rule group's) meaning is
already expressed in another's that reaches the same conclusion
from similar but less restrictive conditions.

Conflicting Rules. Rules (or groups of rules) that use the saný
(or very similar) conditions, but result in different conclusionr.

2-30

or rules whose combination violates principles of logic (e.g.,
transitivity).

Circular Rules. Rules that lead one back to an initial (or
intermediate) condition(s) instead of a conclusion.

a Unnecessary If Conditions. Values on a condition that do not
affect the conclusion of any rule.

0 Unreferenced Attribute Values. Values on a condition that are not
defined; consequently, their occurrence cannot result in a conclu-
sion.

4 Illegal Attribute Values. Values on a condition that are outside
the acceptable set of values for that condition.

0 Unreachable Conclusion (and Dead Ends). Rules that do not connect
input conditions with output conclusions.

Static testing for the above anomalies could be performed manually for

small, well-structured knowledge bases. For even moderately sized knowledge

bases, however, this approach is precluded by the amount of effort required

and the probability of disagreements among testers. Consequently, researchers

(e.g., Culbert and Savely, 1988; Franklin et al., 1988; Nguyen et al., 1987;

Stachowitz et al., 1988) have begun developing automated static testers. We

do not have the space here to discuss these different efforts. However, we do

want to caution the reader that automated static testers are not without their

limitations. To quote Nazareth (1989, pp. 265-266), "In most cases the

verification process is closely dependent on the structure of the problem

domain, making translation of principles to other systems difficult. Addi-

tionally, only a subset of the errors identified [above] are covered. ... The

expansion of verification scope has serious implications for detection. ...

[And] the majority are directed toward applications without uncertain in-

ference." Nevertheless, automated static testers represent a major step

forward in assessing the logical consistency and completeness of a knowledge

base. Unfortunately, such static testers are not available commercially, nor

are there plans to make static testers available in the near future.

Functional Completeness and Predictive Accuracy. By functional com-

pleteness we mean to address the range of domain-oriented questions, such as

whether the knowledge base contains all desired input conditions and output

conclusions, or even "knows" its knowledge limitations. Some of these

2-31

questions can be answered by domain references. However, the level of domain

expertise typically desired for expert systems is typically not codified in

such references. Indeed, Davis (1989) has argued that one of the major

contributions of expert system technology is the organization and codificatio'

impacts it has on various disciplines. Consequently, domain experts are

typically required to evaluate the functional completeness of the system.

However, one should remember that the system's level of functional complete-

ness depends on its stage of development and, most importantly, the domain

requirements resulting from the requirements analysis (step 1).

The predictive accuracy of the knowledge base pertains to the correct-

ness by which the rules (or whatever representation scheme) relates input

conditions to output conclusions. Such an assessment is essential for expert

systems, for "garbage in" is literally "garbage out." Consequently, experts,

both those who participated in development and particularly those acting as

independent evaluators, should be used to evaluate the predictive accuracy,

and thus adequacy, of the knowledge base. Expert evaluation typically

proceeds in two ways: through examination of the knowledge base and the

evaluation of test cases.

Expert examination of the knowledge base typically focuses on whether

the system exhibits "correct reasoning." The obvious concern is, of course,

that the knowledge base not have mistakes, However, another concern, and one

which Gaschnig et al. (1983) pointed out is not shared by all developers, is

whether their programs reach decisions like human experts do. Many psycholo-

gists have long argued that this concern can not be answered for one cannot

look inside an expert's head to obtain the "correct reasoning." Instead, all

one can do is build "paramorphic models" (Hoffman, 1960) of the reasoning

process, and evaluate their predictive accuracy against test cases. Indeed,

researchers (e.g., Dawes and Corrigan, 1974; Einhorn and Hogarth, 1975; Levi,

1989; Stewart et al., 1988) have shown that simple linear models can often

result in prediction as good as that achieved by the far more complex models

found in expert systems, or even by the experts themselves.

As Lehner and Adelman (in press) point out in their review of the

literature, this is r.ot a resolved issue. To quote Caschnig et al. (1983, p.

2-32

255), "... there is an increasing realization that expert-level performance

may require heightened attention to the mechanisms by which human experts

actually solve the problems for which the expert systems are typically built."

In addition, Adelman, Rook, and Lehner (1985) found that domain expe:t<'

judgments of the utility of decision support system (including expert system)

prototypes were significantly affected by the match between how they and the

system attempted to solve the problem. This suggests that, at a minimum, the

system's representation and presentation scheme needs to be reviewed.

However, if the principal objective is to develop a system that maximizes

predictive performance, then simple linear models, or mathematical w~odels

unrepresentative of how the experts solve the problem, may be more appropriate

than models of human experts in certain situations.

The predictive accuracy of the knowledge base is assessed using test

cases and performance standards. The desired standard is ground truth; that

is, the unambiguously correct answers to the test cases. Correct answers are

most desirable because substantial research (e.g., see Ebert and Kruse, 1978;

Goldberg, 1970; Yu et al., 1979) has shown that experts do not always make

perfect inferences and, in fact, often disagree with one another in the kinds

of complex domains for which many expert systems are developed. Often, bu:

not always, it is inappropriate to expect better predictive accuracy from the

system than the expert. (This may not be the case where the system incor-

porates knowledge from a limited, well-defined domain-succ; as a procedur-

manual-or where the system represents the expertise of several experts.

Here, it may be appropriate to expect the system to be more accurate than any

given expert. Also, Brian Smith points out that "we already ask machines to

do things that people don't do," such as land ar aiLplane in fog, and that In

many serious applications the standard of doing as well as a human is not good

enough (Davis, 1989).)

If ground truth measures exist, one can try to discriminate between

"accuracy" and "bias" in a signal detection sense (Lehner, 1989). Accuracy

refers to the degree of overlap in the distributions of belief values when the

hypothesis is true versus false. Bias refers to the proportion of false

negatives (hypothesis true, but user says false) to false positives (hy-

pothesis false, but user says true).

2-33

If the correct answers do not exist or, for whatever reason, are inap-

propriate for the tes. cases, then one must rely on the judgment of an expert

or the consensus judgment of a group of experts. Considerable care must be

given to structuring the experts' activities. In particular, the evaluation

team must ensure that the experts are "'lind" as to whether the system or

other experts generated the conclusions to the test cases. This is typically

referred to as a "Turing test" (e.g., see Rushty, 1988).

In closing this subsection, it is important to note that test case

construction is an important issue. To quote O'Keefe et al. (1987, p. 83),

"The issue is not the number of test cases, it is the coverage of test

cases-that is, how well they reflect the input domain. The input domain is

the population of permissible input ... " (italics theirs]. The required

coverage capabilities is clearly a statement that needs to be a result of the

requirements analysis. For as O'Keefe et al. point out, developers frequently

devote a disproportionate amount of time to attempting to ensure tha, the

system can handle the truly "expert" cases that may occur very infrequently.

Moreover, these "infrequent" cases often become the test cases. This may or

may not be appropriate depending on the requirements for the system, and it

can certainly be expensive.

An alternative identified by O'Keefe et al. is to randomly select test

cases using a stratified sampling scheme such that the relative frequency of

the cases is representative if those in the operatinnal environment or

stipulated In the requirements. Addiionally test cases should be chosen to

cover situations where a failure in the syptem would be especizlly serious.

It is also important that some of -he test -ases simulate the most common

operation of the system. Finally, Lehner and Ulvila (1989) have shown that

the number and type of test ct..es depend cn 'he level of expert sy. zem

performance that users conside-7 to be valuable. The greater the difference

b '.w.en the average le'els of predictive accuracy with (vrsus without) the

system, considered necessary by users, the smaller the number of t-st cases

actually required to test whether the exp,-, system meets the criterion

requirement. This point will be considered in substantial detail in Chapte.

5.

2-34

Service Requiremencs. Verification testing should be systematically

performed for the service requirements of expert systems, just like any other

software product. Fagan and Miller (as reported in DeMillo et al., 1987) have

identified four phases for software testing. The first phase is manual

analysis in which the requirements specification and design and implementation

plan are analyzed for problems by experienced software engineers. The second

phase is static analysis, which may be manual or automated, in which require-

ments and design documents and software are analyzed, but without code

execution. The third phase is dynamic analysis in which software is executed

with a set of test data, such as in random testing, functional testing, and

path testing. The fourth phase, which Fagan and Miller consider to be

optional, is attempting to prove the program as being correct, such as in

mathematical verification. Detailed discussions of these and other methods

can be found in, for example, DeMillo et al. (1987), Fairley (1985), Pressman

(1982), and Rushby (1988).

Discussion. In closing this subsection, we want to make four points
about technical evaluation methods. First, as Hamlet (1988, p. 666) points

out, each method has its strengths and weaknesses and therefore, represents

"imperfect test methods." Therefore, testers need to use multiple methods to

obtain accurate feedback. Second, the intent of testing is to find errors.

As Fairley (1985, p. 268) points out, "... one has most confidence in programs

with no detected bugs after thorough testing and least confidence in a program

with a long history of fixes." Third, the best way to minimize the number of

errors and the amount of time, effort, and money required to fix them, is to

eliminate errors early in development. Consequently, as Gelperin and Hetzel

(1988) point out, software development life cycles are becoming "preventive"

through the application of software testing methods early in the development

process. And, fourth, testing methods using experts to evaluate the knowledge

base rely heavily on empirical analysis via test data. However, the reader

should keep a clear distinction between the empirical results of technical and

empirical evaluation methods. The former focus on how well the expert

sysLem's knowledge base was developed; t1i latter focus on how much better

system users, who may not be experts, can perform the task using the expert

system.

2-35

Empirical Test and Evaluation Methods

Empirical evaluation methods can be classified into experiments, quasi-

experiments, case studies, simulations, and statistical analyses of historica'.

data (e.g., see Adelman, 1990b). Only the first two methods are considered

here.

Experiments. Experiments are, by far, the most common and commonly

thought of empirical evaluation method. Moreover, they are particularly

appropriate when a number of people would actually use the developed expert

system, for experiments are designed to help generalize from a test sample to

the larger population.

One typically thinks of two kinds of experiments-benchmark testing and

factorial designs. The first kind tests the system against objective bench-

marks that represent performance constraints. If the system passes the

benchmarks, it proceeds further; if it fails, it undergoes further development

or is set aside. "For example, it is not enough to know that with the aid the

user can arrive at a decision in 30 min[utesl. If the organizational user

required a decision in 30 min[utes], the aid would be effective. If a

decision was needed in 15 mintutes], the aid would not be effective" (Riedel

and Pitz, 1986, pp. 984-985).

It should be noted that such performance benchmarks differ from the more

traditional time and efficiency measures used to benchmark computer systems.

[Note: Readers interested in the latter are referred to Press (1989), who

benchmarked different expert systems on the time required to load and execute

different types of knowledge bases, and the amount of disk space required in

source and fast-load formats.] Both classes of benchmarks typically get

developed during requirements analyses emphasizing a features-based approach.

Although such performance constraints may be necessary in real-time, life-

critical activities, they are unnecessary for many expert system applications.

Performanue benchmarks represent noncompensatory decision rul7: that

is, the system's other features do not compensate for failing the performance

benchmark. Such a position may be inconsistent with the dccisinn r,:le guld•n•.

2-36

the sponsoring team's evaluation. For example, it's quite possible that the

sponsoring team would give up some time for task accomplishment in order to

gain an improvement on other MOEs, such as decision performance.

The second kind of experiment is a factorial design (e.g., see Cochran

and Cox, 1957) where (a) one or more factors are systematically varied as the

independent variables, and (b) the dependent variables are quantitative,

objective measures of system performance. There are five basic components of

factorial experiments. First, there are the participants, or subjects, in the

experiment. These may or may not be experts depending on the targeted users

of the expert system's advice. We focus on "users" because the system

operators may or may not be the actual decision makers.

Second, there is the task that the participants perform during the

experiment. Test cases are often embedded in larger scenarios representative

of the organization's problem-solving environment in order to effectively

assess (1) the users' ability to solve pro'lems with and without the system,

and (2) their opinion of system characteristics, such as its speed, explana-

tion capabilities, organizational fit, etc. Remember, the expert system may

be addressing only part of a much larger organizational decision.

Third, there are the experimental conditions or independent variables of

interest, such as whether the participants perform the task with or without

the expert system. The level of task difficulty should be either as represen-

tative of the operational environment as possible or matched to the required

performance capabilities of the system. The capabilities of the system depend

on its stage of development (e.g., see Gaschnig et al., 1983; Marcot, 1987).

Fourth, there are the dependent variables (or MOEs) of interest.

Objective measures (e.g., performance and speed), observational measures

(e.g., regarding how the system is used) and subjective measures (e.g., user

confidence in the solution) can all be used as dependent variables. In the

case of decision quality, one should use either ground truth measures (i.e.,

the correct answer) for the task or, if they do not exist or are inappro-

priate, the consensus or collective judgment ot experts. If ground truth

measures exist, one should discriminate between "accuracy" and "bias" in a

2-37

signal detection sense, as was done for the knowledge base. If experts are

used, "blind" ratings as to which experimental conditions produced the

solutions are again required to control against bias. Using at least two

experts who have not participated in the development is advocated here becausi,

of the substantial empirical research showing expert disagreement. However,

the use of one expert is acceptable if the requirement is that the expert

system emulate the judgments of that expert.

Fifth, there are the procedures governing the overall implementation of

the experiment. Substantial care should be directed toward accurately

representing the unaided as well as aided condition to ensure a fair test. If

performance is better in the "aided" condition, we want to be able to say that

it is due to the expert system and not some other extraneous factor. In order

to do so, we need to (ideally) try to control for all "plausible rival

hypotheses" (Campbell and Stanley, 1966, p. 36) that might explain the

obtained findings. Toward that goal we introduce the concepts of reliability

and validity.

Yin (1984, p. 36) defines reliability as "demonstrating that the opera-

tions of a study-such as the data collection procedures---can be repeated,

with the same results." The key concept is replication. In contrast, "valid"

is defined by Webster's dictionary (1966) as that which is sound because it is

"well grounded on principles or evidence." If an experiment is valid, its

conclusions can be accepted; that is, rival hypotheses have been controlled

for.

An experiment can be reliable, but its conclusions invalid. However, an

experiment cannot be valid if it is unreliable; that is, one cannot conclude

that the results are well grounded if the evidence upon which they are based

Is undependable. The basis for good experimentation is, therefore, reliable

(i.e., dependable) procedures and measures. Although far from trivial,

reliability is typically possible in experimentation because of high ex-

perimenter control. For example, the experimenter can pilot-test and subse-

quently modify the procedures and measures until they produce the same resu,!

when applied to the same situation, regardless of who performs the experiment

0
2-38

We consider four types of validity. First, Yin (1984, p. 36) has

defined internal validity as "establishing a causal relationship, whereby

certain conditions are shown to lead to other conditions, as distinguished

from spurious relationships." As Cook and Campbell (1979, p. 38) note,

"Internal validity has nothing to do with the abstract labeling of a presumed

cause or effect; rather, it deals with the relationship between the research

operations irrespective of what they theoretically represent" [italics

theirs]. Although there are numerous threats to internal validity, randomiza-

tion of participants to experimental conditions is the most effective means

for guarding against them.

In addition, one needs to consider the experiment's construct validity,

its statisti.al conclusion validity, and its external validity. Yin (1984, p.

36) has defined construct validity as "... establishing good operational

measures for the concepts being studied." Construct validity is required in

order to "make generalizations about higher-order constructs from research

operations" (Cook and Campbell, 1979, p. 38) in a particular study. Good

construct validity means that we are measuring that, and only that, which we

want to be measuring. Of particular concern in expert system evaluations is

that the "system treatment" is not confounded with something else. If

confounding exists, then the "something else" represents rival hypotheses that

could explain our obtained results.

"Statistical conclusion validity is concerned not with sources of

systematic bias but with sources of random error and with the appropriate use

of statistics and statistical tests" (Cook and Campbell, 1979, p. 80). The

former concern is with whether the study is sensitive enough to permit

reasonable statements regarding the covariation between the independent and

dependent variables. The latter concern is with what constitutes appropriate

statistical tests of these statements. We will return to both concerns in

substantial detail in later chapters.

As Campbell and Stanley (1966, p. 5) point out, "External validity asks

the question of generalizability: To what populations, settings, treatment

variables, and measurement variables can this effect be generalized?" [italics

theirs]. Within the context of expert system evaluations, external validity

2-39

deals with the extent to which the results of an experiment conducted in a

simulated (laboratory) setting will generalize to an operational environment.

Consistent with an iterative, prototyping approach, the representativeness of

the experimental setting and the level of the system's performance require-

ments should advance throughout the development cycle. Although the latter is

routinely acknowledged, the former is not. It must be remembered that expert

systems and, indeed, most information and decision technology, fail to be

successfully implemented for organizational, not technical, reasons. Conse-

quently, increasing the fidelity of the organizational and environmental

interfaces between the system and its users is essential in generalizing the

performance results obtained in the laboratory to the real world.

Quasi-Experiments. Ideally, field experimentation would be used to

assess if the expert system significantly improved performance in an actual

organizational setting. For example, appropriate organizational units (e.g.,

sections in a company or governmental agency) would be randomly assigned to

the "with system" and "without system" conditions, and their performance

measured until it stabilized. If possible, a "placebo" condition would be

included too. Organizational units in this condition would be given some

"treatment" that was not hypothesized to have any effect on performance. This

is analogous to giving patients sugar pills when evaluating new drugs, and is

oriented to controlling for the "Hawthorne effect" (e.g., see Schein, 1970)

confounding in the "with system" condition that is the result of being gi-ven

special treatment and not the technology. The unit of analysis is the

performance of the organizational unit; consequently, a large enough sample of

units would be required for performing statistical tests.

The sample size and randomization requirements of true experiments is

typically not possible in many organizations. Quasi-experimental designs

should be used in such situations. To quote Campbell and Stanley (1966, p.

34), "There are many social settings in which the research person can intro-

duce something like experimental design into his scheduling of data collection

procedures (e.g., the when and to whom of measurement), even though he lacks

the full control over the scheduling of experimental stimuli (the when and

whom of exposure and the ability to randomize exposures) which make a true

2-40

experiment possible. Collectively, such situations can be regarded as quasi-

experimental designs" [italics theirs].

There are a number of different types of quasi-experimental designs.

Among the ten types identified by Campbell and Stanley (1966) are: (a) time

series designs, where the organizational unit would be measured for a long

period of time before and after receiving the system; (b) multiple time series

designs that do not use randomization, but do use a control group that does

not receive the system; and (c) nonequivalent (and nonrandomized) control

group designs that rely on statistical techniques like analysis of covariance

to assess whether the pre-test and post-test difference for the expert system

group is significantly better than that of the control group. These and other

empirical test and evaluation methods will be considered in greater detail in

later chapters.

CHAPTER SUMMARY

This chapter had three principal sections. The first section overviewed

test and evaluation criteria identified by Adelman and Ulvila (in press).

Although the specific criteria one would use would depend on the specific

requirements of one's users and sponsors, the criteria presented herein

contained the wide range of test and evaluation criteria commonly found in the

literature and, therefore, can give one a broad list of criteria from which to

start. The second section of the chapter overviewed the expert system

development approach. Although this approach is moving toward incorporating

aspects of more traditional software systems engineering, it is still epito-

mized by iteration, prototyping, and test and evaluation. And in the third

section, we overviewed the many different types of subjective, technical, and

empirical test and evaluation methods. A multi-faceted test and evaluation is

required in order to provide the different kinds of information that develop-

ers and sponsors need in order to assess the utility of an expert system, both

during and after development.

All three classes of test and evaluation methods are applicable during a

fcrmal test and evaluation of an expert system prototype by an outside group,

as was shown in Chapter 1. In addition, however, specific methods are more or

2-41

less applicable at other times in the development cycle. In particular,

subjective evaluation methods are applicable early in the cycle because they

represent an explicit means for defining the judgments of members of the

sponsoring team and potential users of the system.

Technical test and eva3uation methods are also spplicable during design

and development. For example, as part of the knowledge elicitation and

representation process, one should routinely assess the adequacy and accura-'

of the knowledge base by using (1) static testing to help assess the knowledge

base's logical consistency and completeness, and (2) experts, both those

participating in development and those acting as evaluators, to help assess

the knowledge base's functional completeness and predictive accuracy. In

addition, traditional software test and verification methods can be used to

help assess the "service" versus "competency" requirements of the expert

system.

In contrast to technical test and evaluation methods, which focus on how

well the system was developed, empirical test and evaluation methods focus on

how well decision makers can perform their task(s) with (versus without) the

system. From an iterative, prototyping perspective, it is anticipated that

experiments will be conducted throughout development as a means of objectively

measuring the performance of the expert system and testing hypotheses fol

improving it. After transferring the expert system to the test organization,

experiments, quasi-experiments, and case studies can be used to evaluate

performance in the actual, organizational setting.

The different methods overviewed herein address the different test and

evaluation criteria represented in the hierarchy shown in Table 2-1. This

hierarchy not only represents a framework for summarizing the criteria, but

for integrating them using multiattribute utility assessment. In particular,

we will demonstrate that this hierarchy can be used in conjunction with MAUA

scoring and weighting procedures to assess the overall utility of an expert

system to users and sponsors. Consequently, with these thoughts in mind, we

now turn tj consider subjective test and evaluation methods in more detail

the next chapter.

2-42

CHAPTER 3:

MORE ABOUT SUBJECTIVE TEST AND EVALUATION METHODS

The last chapter overviewed five different subjective evaluation

methods: multiattribute utility assessment (MAUA), cost-benefit analysis,

the dollar-equivalent technique, decision analysis, and a MAUA-based cost-

benefit analysis. We also briefly overviewed how feature-based criteria

lists and value of information analysis, two other subjective evaluation

methods, can be subsumed under the broader methods of MAUA and decision

analysis, retiectively. This chapter will (1) overview the applicability

of each of the five subjective methods in more detail, and (2) provide

details of a specific MAUA-based method for testing expert systems.

This chapter will continue to emphasize the importance of using

subjective evaluation methods to link together Steps 1 (requirements

analysis) and 8 (evaluation) in the expert system development process

through the feedback provided in Step 9 (feedback). For it is by defining,

at the outset of the development effort, the requirements for evaluating

the expert system that helps ensure that the development effort will stay

on track and that the expert system will be used by the persons for whom it

is being developed. Moreover, the sponsoring team's objectives, and

particularly the tradeoffs between objectives, can change during the course

of the development effort, either because of the changing environment with

which the sponsoring team is dealing, changes in the membership of the

sponsoring team, the insights gained during the development process

regarding what is technically feasible or most appropriate, etc. Subjec-

tive evaluation methods provide an effective mechanism for representing

these changes and, through sensitivity analysis, estimating their implica-

tions on the global measure of effectiveness (MOE). More generally, such

methods provide an explicit mechanism (and audit trail) for evaluating

whether the prototypes and final, operational version of the expert system

are consistent with the sponsoring team's goals and objectives.

The applicability of subjective evaluation methods to the other steps

in the development process will not be emphasized in this chapter. As was

pointed out in the last chapter, these methods can be readily used by the

3-1

development team throughout the development process-for example, in for-

mulating specific requirements, in evaluating off-the-shelf software (e.g.,

shells) versus project-specific software, or in evaluating various hardware

configurations. Remember, these subjective methods and variations were all

developed to help decision makers evaluate systematically decision options,

regardless of what they might be. This presentation is an adaptation of

the methods for testing expert systems. The methods are applicable

anywhere in the development process where members of the development team

need to evaluate one option against another. Thus, in those areas impor-

tant enough to warrant their use, they represent an audit trail for

indicating why one action was selected over another.

Finally, it is important to again point out that Andriole (1989) iden-

tifies a wide range of "requirements analysis methods" and taxonomies for

profiling the task, user, and organizational requirements. These methods

include open- and closed-ended questionnaires, various types of interview-

ing procedures, the observation of users' behavior as they perform

scenarios (i.e., hypothetical decision problems), protocol analyses where

users describe their decision-making processes as they perform scenarios,

etc. We will not discuss these methods because they are concerned with

requirements analysis rather than testing and evaluation. (For the same

reason we will not discuss prototyping methods or systems engineering

methods.)

We do want to point out, as Andriole does, that requirements analysis

methods are fallible; consequently, members of the development team should

use multiple methods in order to ensure the reliability and validity of the

results of the requirements analysis. By reliable we mean that the same

method will produce the same results at different times. By valid we mean

that the results are, in fact, related to the utility of the expert system.

Consistent with the prototyping strategy, we would expect less reliability

and validity of the results early in the development process. As a tester

or evaluator, you can help the development team assess which aspects of the

requirements analysis need more work, as well as what other methods could

be used to improve the analysis, before moving on to develop the functiona.l

3-2

model of the system. In this respect, you should find subjective evalua-

tion methods particularly helpful.

MULTIATTRIBUTE UTILITY ASSESSMENT (MAUA)

There are numerous texts (e.g., Huber, 1980; Keeney and Raiffa, 1976;

Pitz and McKillip, 1984) and papers (e.g., Edwards, 1977; Einhorn and

McCoach, 1977) describing MAUA. As Huber (1980, p. 46) has pointed out,

"Multiattribute utility models (MAU models) are designed to obtain the

utility of items or alternatives that have more than one valuable at-

tribute; therefore, they must be evaluated on more than one criterion. A

MAU model essentially shows a decision maker how to aggregate the utility

or satisfaction derived from each of the various attributes into a single

measure of the overall utility of the multiattributed item or alternative."

Expert systems are clearly "items" that have numerous attributes (or

characteristics) of potential value to a decision maker. MAUA represents a

method for combining how well an expert system scores on these attributes

(i.e., individual measures of effectiveness) into an overall assessment.

All of the subjective evaluation methods that we will consider in this

book proceed by a "divide ar.d conquer" or "decomposition and reintegration"

approach. When applying MAUA to the testing and evaluation of expert

systems, the expert system is conceptually decomposed into criteria that

can be defined well enough so that one can obtain either subjective or

objective measures of how well the expert system performs on each of them.

This decomposition typically proceeds through the creation of a value

hierarchy, such that the global criterion entitled "the overall utility (or

value) of the expert system" is decomposed into major categories of

criteria (e.g., the knowledge base, the inference engine, etc. as shown in

Table 2-1). These categories are further decomposed, and so forth, until

one is reasonably confident that one can define and obtain precise.

reliable, and valid measures (or scores) of the expert system on each

bottom-level criterion in the hierarchy.

[Note: According to Huber (1980), the bottom-level criteria should be

called "attributes." This convention is not strictly adhered to and, in

3-3

fact, it is not uncommon to use the words "criteria" and "attributes"

interchangeably. Moreover, it is not uncommon for the names Multiattribute

Utility Assessment (or Analysis), Multiattribute Utility Theory, and Multi-

criterion Decision Making to be used synonymously, even though purists

within each "variation on the theme" might take issue with this state of

affairs. In this book, we will try to consistently use the term "attri-

butes" to refer to the bottom-level evaluation criteria. However, the

reader should not be concerned if the terms are used synonymously.)

By "precise" one means that the attribute's definition is sufficiently

clear and unambiguous so that everyone knows exactly what characteristic of

the expert system is being measured by the attribute and how to measure it.

By "reliable" one means that, at a minimum, one will get approximately the

same score for an expert system on an attribute if one uses the same

measurement instrument at two different points in time. This is referred

to as "test-retest" reliability. The measurement instrument could be

subjective (e.g., a person's score in answering a question) or objective

(e.g., a performance score in an experiment). In addition, one would hope

to obtain "inter- instrument" reliability as well, such that two measures of

an attribute, whether they are subjective or objective, would produce ap-

proximately the same scores. Finally, by "valid" one means that the

attribute is, in fact, related (or contributes) to the overall utility of

the expert system as determined by the key decision maker or the sponsoring

team. While many people would like to think that objective, performance

scores are the only valid MOEs, the overall decision regarding the value of

an expert system is invariably a mix of subjective and objective measures.

More broadly, it is desirable that the MAU hierarchy have the follow-

ing general features: be (1) comprehensive enough to account for all the

different MOEs deemed important when evaluating the expert system; (2)

capable of differentiating between an acceptable and unacceptable (or

"good" vs. "bad") system; and (3) composed of independent attributes.

Although the first two features appear clear and straightforward, the last

one may appear counter-intuitive and it is not absolutely essential. To

quote Ulvila et al. (1987, p. 25), "While it is desirable to satisfy the

last characteristic, it is by no means required. It is possible to define

3-4

evaluation factors that are dependent upon each other and interact in

complex ways. However, most of the value of an KAU model can usually be

obtained by using a simpler form in which each factor is independent of all

other factors. If it is clear that two factors are not independent, but

both are interacting, it is sometimes possible to define a single factor

that incorporates the critical aspects of the dependent factors. (Notice

that here we are addressing independence in the worth [italics theirs] of

an attribute, not technical independence-e.g., run time, computer usage,

performance speed, and judgmentally assessed speed are likely to be highly

dependent but may represent attributes of separate interest to the

tester.)"

It is important to note that a hierarchy, while extremely helpful, is

not absolutely essential, All that is essential is that one be able to

define a comprehensive set of (independent) attributes that can be measured

precisely, reliably, and validly so that the overall utility score can

differentiate between an acceptable and unacceptable expert system. The

* hierarchy simply helps one perform this task.

The application of MAUA during, or even prior to, the requirements

analysis step is typically oriented toward helping the sponsoring and

development teams (a) identify the broad organizational requirements the

expert system needs to satisfy, and (b) select the general type of expert

system that will satisfy these requirements. The hierarchy of MOEs

presented in Table 2-1 does provide a comprehensive reference point (or

checklist) of requirements that an expert system should satisfy and,

therefore, provides an effective design and evaluation tool for guiding and

monitoring, respectively, the ongoing development process. It does not,

however, necessarily provide an effective hierarchy of MOEs for initially

selecting the general type of expert system to develop, for that decision

may require different types of information.

As a tester or evaluator, the hierarchy of MOEs and, more generally,

the application of MAUA should be tailored to the objectives and informa-

tion needs of the members of the sponsoring team with which one is

working. In fact, few structuring techniques have been proposed by

3-5

decision szientists. Nwo techniques have, however, been routinely used by

analysts applying MAUA. a top-down (or hierarzhical) approach (Keeney and

Raiffa, 1976), and a bottom-up (or attribute listing) approach (Kelly,

197j). The top-down approach to structuring the hierarchy proceeds as

follows: the upper level nodes are listed first; then each node, in turn,

is subdivided into its component attrib'.tes The process continues until

it identifies the lowest-level attributes. In contrast, the bottom-up

approach proceeds by first obtaining a list of all of the possible at-

tributes (i.e., lower-level nodes of the bierarchy) without any concern for

their hierarchical arrangement. AU cffactive procedure for doing this that

is quite consistent with the SHOR paradigm is to ask the participant (e.g.,

decision ma -) to describe how the alternatives are different (e.g.,

better or worse) frox each othcr. The specific differences typically

represent the bottom-level attributes. The attributes are subsequently

clustered together to form the criteria representing t..e branches of the

hierarchy.

In general, there has been very little research evaluating the

relative effectiveness of MAUA structuring techniques, and only one study

(Adelman, Sticha, and Donnell, 1986) doing so under controlled, experi-

mental conditions where there existed an accepted multiattributed hierarchy

as an external criterion for measuring effectiveness. With regard to the

latter, Adelman et al. found no significant difference in the accuracy of

top-down and bottom-up structuring techniques, Although equivocal, their

results did, however, indicate that the top-down technique results in

deeper hierarchies than the bottom-up technique. Since the deeper hierar-

chies did not result in more accurate ones, these results suggest that

greater depth is merely a by-product of the top-down approach and not a

function of a more comprehensive problem decomposition. Their "post hoc"

analysis strongly suggested that combining the two approaches would result

in significantly more accurate hierarchies. The h.erarchy of expert system

attributes described later in this chapter was developed by a combination

of top-down and bottom-up techniques.

Reintegration typically occurs within MAUA throupfh the application ',

utility functions and assessment of relative importance weights, Remember

3-6

the expert system is being evaluated on many different attributes, The

natural measurement scale for an attribute depends on the nature of the

attribute. For example, the scale for an attribute could be in objective

units (e.g., minutes for time), subjective units (e.g., the eleven-point

questionnaire scale used in the DART evaluation), or categories (e.g., yes

or no to the presence of a feature), depending on the nature of the

attribute. A common scale is, however, required in order to compare scores

on one attribute with scores on another (i.e., combining "apples with

oranges") and, by so doing, obtain an overall assessment for the item

(e.g., expert system) being evaluated by the decision maker. A "utility"

scale, which conceptually measures psychological value or worth or satis-

faction, meets this requirement. Utility (or value) functions are used to

translate the performance on an attribute into a utility score on that

attribute. Then, relative importance weights (or other forms of combina-

tion rules) are used to assess the relative value of a utility score on one

attribute with the utility score on another.

Utility functions for individual attributes tend to be linear,

increasing or decreasing in form, as we used in the case study shown in

Chapter 1. But as Hammond et al. (1975) point out, there is no reason why

they can not be U-shaped or inverted U-shaped or even a step-function such

that the utility score on an attribute is zero until a certain level of

performance is achieved on the attribute. The functions are represented

pictorially by utility curves, such as the hypothetical ones shown in

Figure 3-1 from Ulvila et al. (1987, p. 29).

n D

Attribute Attribute Attribute Attribute
(a) (b) (c) Md)

Figure 3-t: Some Possible Shape Utility Functions

3-7

The specific range for the utility scale is arbitrary; for example,

Huber (1980) uses a 0 to 100 range throughout his book and Keeney and

Raiffa (1976) use a 0 to 1.0 range throughout theirs. What is critical,

however, is the relative utility (or value) of the scores on the scale, ani

the relationship between differences on the scale. A utility score of 50

on a 0 to 100 utility scale (or 0.5 on a 0 to 1.0 utility scale) indicates

that it is mid-way in value between the lowest and highest values on that

scale. The difference between 25 and 50 on a utility scale is equivalent

to the difference between 50 and 75 on that scale. The actual values on

the natural scale for the attribute that corresponds to these utility

values will, more often than not, fail to correspond to such a straight-

line function.

Consider the hypothetical utility function shown in Figure 3-2 from

Ulvila et al. (1987, p. 29), which transforms the time required to set up

an artificial intelligence system into a utility score in the military

context they were considering. A utility score of 100 is obtained for a

set-up time of 0 minutes; a utility score of 0 is obtained for a set-up

time of 60 minutes. One obtains half (or more) of the utility if the 0
system is set up in 5 minutes (or less). Moreover, an increase from 5 to

15 minutes, which has a utility scale value of 25, was considered as

serious as an increase from 15 to 60 minutes. This utility scale is

clearly telling the developer the importance of a fast set-up time to the

user.

t00

75

' 50

25

0 5 10 15 20 25 30 35 40 45 s0 55 60

Set-up time (mlnute.)

Figure 3-2: Hypothetical Utility Function for Fxpert System Set-Up Time

3-8

Nor are utility functions limited to characteristics with continuous

measures. Utility functions can also be constructed for categorical

variables or other variables with discrete units. Some examples are show.n

in Figure 3-3. The important features are that the horizontal axis

uniquely determines the state of the attribute, and the vertical axis

specifies the value of the states.

10o x o 100 , 0oo -0 x
x

5 0 5 0 5 0 o ox K

X0. 0 A
EP VP P G VG EG No Yes Low Med High Low Ideal High

Attribute (e) Attribute (f) Attribu%., (g) Attribute (h)

EP = Extremely Poor
VP . Very Poor
P = Poor
G =Good
VG = Very Good
EG . Extremely Good

Figure 3-3: Possible Discrete Utflity Functions

But how important is the relative importance of one attribute versus

another? The relative importance of a utility score on a bottom-level

attribute is reflected typically by (1) its relative weight compared to the

other bottom-level attributes comprising a component, and (2) the relative

weight of the components moving up the hierarchy. For example, Figure 3-4

(from Buede and Adelman, 1987, p. 143) considers the relative importance of

five attributes, which we'll initially assume are all bottom-level at-

tributes to the same upper-level criterion. Specifically, each of the five

rectangles in the top half of Figure 3-4 represents the utility scales for

an attribute. The rank order of the rectangles (going from left to right)

represents the rank order of the attributes in terms of their relative

importance; that is, attribute A is more important that attribute B, and so

forth. The relative height of the rectangles indicates their relative

importance weights. For dxample, attribute B is about 60% as tall as

3-9

attribute A; consequently, a utility score of 100 on attribute B is

equivalent to a utility score of 60 on attribute A. Similarly, attribute C

is half as tall as attribute B; consequently, a utility score of 100 on

attribute C is equivalent to a utility score of 50 on attribute B and a

utility score of 30 on attribute A. A score of 50 on attribute C iL

equivalent to a score of 25 on attribute B and a score, of 15 on attribute

A.

A

0 F

C C

A A

A<B+C+D A>B+C÷E

Figure 3-4: A Pictorial Representation of the Relative Importance
of Different Utility Scales

The bottom half of Figure 3-4 illustrates the "paired comparison"

weighting technique, which utilizes the (utility) scaling concepts il-

lustrated in the top half of the figure. Specifically, it shows that a

utility score of 100 on attribute B plus a utility score of 100 on at-

tribute C results in a (combined) utility score of only 90 on attribute A;

consequently, the combined relative importanre weights for attributes B and

C must be less than the weight for attribute A. In the example shown, the

added importance weights for attributes B, C, and D are greater than that

for attribute A, but the added weights for attributes B. C, and E ate not

By comparing the overall value of a utility score of l,!0 on each of the

3-10

attributes, one is able to assess the relative importance of the attri-

butes.

The same procedures can be used to assign relative weights to the

attributes at the next level of the hierarchy, and so forth up the hierar-

chy until all the attributes at each level of the hierarchy have been

assigned relative importance weights. The weights at each level of the

hierarchy should be proportional such that the sum of the weights at each

level is the same. We recommend scaling the weights to sum to 1.0 at each

level so that the overall utility scale is on the same scale as is being

used for each attribute. If one then multiplies the weights along each

branch from the top to the bottom of the hierarchy, one will obtafn a

cumulative weight on each bottom-level attribute that indicates the overall

importance of one bottom-level attribute versus another.

This method of assigning weights to attributes assumes that the at-

tributes are "additively independent" (Keeney and Raiffa, 1976). Roughly

speaking, additive independence is a condition where the utility for

improvements in one attribute does not depend on the levels of the other

attributes. Other, more complicated formulations are possible, and many of

them are described by Keeney and Raiffa (1976). However, Edwards (1977)

notes that (p. 250), "theory, simulation computations, and experience all

suggest that [the additively independent form] yields extremely close

approximations to very much more complicated "true" utility functions,

while remaining far easier to elicit and understand." The additive form is

assumed in the framework described later in this chapter and used through-

out this book.

As has been discussed thus far, reintegration of the bottom-level

scores for an expert system into the assessment is achieved in MAUA by the

weighted sum of all the utility scores. This can be represented algebra-

ically by equation [3-I]:

U(i) - Z wju(xij) [3-1)

3-Il

where:

U(i) is the overall utility for alternative i;

wi is the "cumulative" relative weighL on attribute (J);

u(xlj) is the utility value for alternative i on attribute J; and

F, indicates the summation over all attributes.

Equation [3-1] focuses on the bottom-level attributes in a hierarchy, for

the relative weights (wj) in Equation (3-11 represent the "cumulative

weights" on the bottom-level attributes. They are obtained by multiplying

the weights along each branch of the hierarchy from the top to the bottom.

The same numerical results can be obtained if one goes from the bottom

up in the hierarchy. That is, one would multiply the noncumulative

relative weights and utility scale values achieved by the alternative for

each of the bottom-level attributes in the hierarchy. One would obtain a

score for the criterion at the next higher level of the hierdrchy by

summing the weighted utility scores for all the bottom-level attributes

that it comprises. The process is then repeated. One would multiply this

score by the relative weight for the criterion to obtain a weighted score

for the criterion. Then, one would add the weighted scores to obtain a

utility score for the criterion category at the next higher level of the

hierarchy, and so forth, moving up the hierarchy until one obtained an

overall utility score.

As Hogarth (1987) has pointed out, the additive decision rule shown in

Equation [3-1 is a compensatory combination rule because high utility

values on certain attributes can compensate for low values on other

attributes and still result in a good score on the global MOE. However, as

Riedel and Fitz (1986) pointed out, it might be more appropriate to use a

noncompensatory rule to ensure that the expert system gets a low score on

the global MOE if it fails to achieve the necessary performance level on a

critical bottom-level attribute. This perspective that can be readily

handled arithmetically in MAUA by using (1) a zero/one utility score to

reflect whether or not the expert system passed the threshold on the

3-12

critical dimension(s), and (2) a multiplicative combination rule to obtain

the global MOE utility score. Alternatively, we recommend the use of

thresholds for attributes that are noncompensatory. Thresholds should be

set for attributes where nonperformance on the attribute should lead to a

poor overall assessment regardless of the performance on other attributes.

Using this system to evaluate an expert system, a failure to pass a

threshold is noted for all attributes where the failure occurs, and this

notation is carried up in higher-level assessments regardless of the

system's weighted-average utility score. This threshold system is utilized

in the MAUA computer program described by Ulvila et al. (1987).

In closing this discussion, it is important to emphasize that MAUA can

be used to create an assessment structure for combining an expert system

using both objective and subjective MOEs. Its application, however, might

initially be disturbing to (and difficult for) members of both the sponsor-

ing and developing teams, for it emphasizes the subjective process decision

ma .rs typically go through when evaluating expert systems. To quote

Riedel and Pitz (1986, pp 987-988), "The [utility scales) and weights are

necessarily personal judgments by the decision maker that express the

contribution each attribute makes to the overall MOE. There is no way to

avoid the fact that the overall MOE must be based on such judgments, or the

fact that no mechanical procedure can replace this subjective assessment

." This does not mean, of course, that MAUA is the only subjective

evaluation method that one can use to evaluate how well an expert system is

meeting the sponsoring team's requirements, but it will be the major

subjective method used in this book. In particular, we propose a MAUA

framework later in this chapter, and we propose weights based on charac-

teristics of the expert system in Chapter 7. We now turn to consider a

second subjective method that has been used for system evaluation-cost-

benefit analysis.

COST-BENEFIT ANALYSIS AND THE DOLLAR-EQUIVALENT TECHNIQUE

As Riedel and Pitz (1986, p.991) point out, "In making decisions about

a system, cost is often an important factor ... The problem is how to

integrate the cost factor into the evaluation design." With MAUA, cost is

3-13

simply considered as one of the (higher-level) MOEs. Its impact on the

evaluation is determined by its impact on the overall utility score, which

is achieved by (a) the utility function translating dollar costs into a

utility score, and (b) the relative importance given to the cost MOE. As

Huber (1980, pp. 79- 83) points out, in traditional cost-benefit analysis

and the dollar-equivalent methods, however, all the benefits, as well as

costs, are translated into dollar values instead of utilities. In the

former, standard economic or accounting practices, such as employing the

rate of return or time value of money concept, are used to create monetary

equivalents. In the latter, "... the monetary equivalents are developed

judgmentally when the standard economic techniques are stretched beyond

their limits."

The perhaps surprising conceptual similarity between cost-benefit

analysis and MAUA can be illustrated by listing the following five prin-

cipal steps for implementing the former, as identified by Keim and Janaro

(1982): (1) identification of pertinent measures of effectiveness, that

is, benefits; (2) the description of alternatives; (3) the "expression" of

performance and cost as functions of the characteristics of each alterna-

tive; (4) the estimation of appropriate (dollar) values for the (perfor-

mance) equation parameters; and (5) the computation, sensitivity analysis,

and presentation of results. This sounds remarkably like the MAUA proce-

dures described above where one (a) decomposed the global MOE into a

hierarchy of MOEs (i.e., attributes); (b) defined the alternatives; (c)

identified the natural scale value for each bottom-level attribute and

obtained the scores for the alternatives on scales; (d) constructed utility

functions for each bottom-level attribute and relative weights for all the

attributes, in order to convert the natural scale values into utility scale

values; and (e) computationally used a weighted, additive decision rule (or

some other combination rule) to convert an alternative's scores on each of

the bottom-level attributes into an overall utility score on the global

MOE. Sensitivity analysis is routinely performed in MAUA to assess the

impact of different scores, utility functions, and relative weights (or

combination rules) on the overall MOE score for one or more alternatives.

The big differences between cost-benefit analysis and MAUA is that the

3-14

former relies as much as possible on tangible (i.e., objective) benefits,

and uses dollars instead of utilities as a metric for measuring value.

From a MAUA perspective, the omission of intangible benefits (and

costs) is equivalent to omitting attributes from the MAU hierarchy.

Whether this is acceptable or not depends on the nature of the "item(s)"

being evaluated by a cost-benefit analysis. Lay (1985, p. 32) has dis-

cussed this point with consideration to expert systems. "Most capital

investments decisions in the business field can be evaluated in terms of

return on investment (ROI). This is because the asset that is being

evaluated will create tangible benefits (such as the manufacture of a

product for subsequent sale). An information system (particularly an

expert system), may only produce intangible benefits [e.g., information and

decision process support] and therefore the ROI criteria can no longer be

applied. Intangibles, although not quantifiable, should be included in the

process since their impact on the organization may be significant."

Obviously, we disagree with Lay's statement that intangibles are not

quantifiable, for MAUA provides explicit procedures for quantifying the

perceived value of intangibles. We do, however, agree with his focus on

the significance of including intangibles in the evaluation. However,

their inclusion or omission should depend on what factors the sponsoring

and development teams consider to be important design and evaluation

requirements. Tf intangibles are deemed unimportant enough to exclude them

from the analysis, particularly after a thorough discussion of the ad-

vantages and disadvantages to including them, then it might be more ap-

propriate to perform cost-benefit analysis than MAUA because of its greater

familiarity and use as common business practice.

Actually, as Huber (1980, p.83) points out, the traditional cost-

benefit analysis approach is a special case of the dollar-equivalent

method, which is "... a special case of the more general ... MAU model

technique." The appropriateness of the traditional cost-benefit analysis

and dollar-equivalent methods versus MAUA depends on the defensibility of

the conversions to monetary equivalents. If standard economic practices

are clear and defensible, Huber argues that the traditional cost-benefit

3-15

analysis approach is oftrn prefer-ed because its conversions are more

explicit and agreed-upon. However, as Huber (1980) and Riedel and Pitz

(1986) point out, cost-benefit analysis requires substantial ludgyrents thn'

may be particularly subject to various biases As a result. "When conver

sion of the payoffs on all attributes to dollar equivalents seems reason-

able and defensible, the dollar-equivalent technioue is nreferred nver rhe

MAU model technique. This is a consequence of the fact that the ;Ingle

aggregate figure derived in dollars can be more ýasilv cuompared to the

levels of other criteria that were not included in the analysis" (Huber,

1980, p. 82). As always, however, the needs and preferences of members of

the sponsoring and development teams should be factored into the decision

regarding which subjective evaluation method to use.

In closing this discussion, it is important to note that Keim and

Janaro (1982) have argued for a phased cost-benefit analysis, where the

nature of the analysis changes through the development cycle. Specifical-

ly, at the beginning of the effort, they argue for a relative cost-benefit

analysis, where the focus is on Identifying the relative costs and benefit,

of a range of alternative system configurations in oruer to select an

alternative (or limited range of alternatives) for further specification.

Their reasoning is that "... due to the evolutionary nature of the final

system configuration the original estimates are often grossly distorted.

The only way to make evaluations reasonable is to compare relative rost-

benefit scenarios for the range of alternatives under consideration" (p.

25). As one moves through the different development steps, the system

design becomes more specific; consequently, one can drop the relative

analysis" focus because increasingly specific and quantifiable information

is available for the system evaluation. Such a "phased" orientation is, of

course, consistent with the discussion above of strivxnb to link together

requirements analysis (and the selection of alternatives) with their formal

evaluations.

DECISION TREE ANALYSIS

Decision tree analysis is a formal method for comnining unceitaint-i,,

with utilities (or monetary equivalents) when evaluating alternative

3-16

decision options. There are numerous texts on the subject (e.g., see Brown

et al., 1974; von Winterfeld*- at,d Edwards, 1986; Watson and Buede, 1987).

We will not discuss it ! =reat detail because, at least to our knowledge,

it has not yet been ae~iied to evaluating expert systems. The interested

reader is, however, referred to Cohen and Freeling (1981), who provide a

detailed theoretical presentation of its potential applicability for

evalue,'ng information systems, and to O'Connor (1989), who discusses its

applicability in developing and evaluating alternative architectures for

the Strategic Defense Initiative.

What is particularly appealing about decision tree analysis for evalu-

ating expert systems is the ability to use scenarios to represent, at a

collective level, the uncertainties inherent in the decision-making

situation facing members of the sponsoring team. Within decision tree

analysis, these scenarios represent the members' hypotheses regarding

alternative states of the world, a perspective that is consistent with the

SHOR paradigm. Remember, at the broadest level, and particularly if the

situation permits it during the earliest steps of the development process,

the evaluator's job is to help members of the sponsoring team decide

whether development of an expert system is an effective option for dealing

with hypotheses regarding the current or future problem environment with

which the organization will be dealing.

From a decision-analytic perspective, the ovecall utility or, more

appropriately, expected utility, of different organizational options

including whether or not to develop an expert system, depends on the (a)

probabilities assigned to the various scenarios, and (b) the utility of

each of the options for each of the scenarios. This situation can ba

illustrated by the concept of a payoff matrix, an example of which is

presented in Table 3-1. The rows of the matrix represent all the different

alternatives, including whether or not to develop the expert system, as

well as variations on a particular theme, available to organizational

decision makers (i.e., members of the sponsoring team). The columns

represent tho different scenarios that could significantly affect the

attractiveness of the alternatives. The P1 -... Pk values represent the

probabilities for each scenario, with their sum being 1.0. The cell

3-17

entries in the matrix indicate the utility (or value) of the outcome or
"payoff" of each combination of options and scenarios. Each outcome is

presumed to represent a cumulative payoff composed of perceived advantageF

and disadvantages on mu1tiDle criteria u.ý varying irw-ortance to the

decision maker(s). The "best" ontion is the one with the highest expected

utility, which is calculated for each option by firs- Tnultip~ving the

utilities for the outcomes and probabilities for the scenarios, and then

summing the products.

Table 3-1: A Simple Payoff Matrix

State-s of Nature
Alternatives (pI)SI (p2)S2 .. (Pk) Sk

A a, a 2 .. ak

B bl b 2 ... bk

N n n .. nk

Substantial care must be given to defining the scenarios and obtaining

the probability assessments. O'Connor and Edwards (1976) point out that

not only do the scenarios have to be realistic, they have to be representa-

tivc of a wide range of possible futures states of nature without being a

long, tedious list of uncertainties. Moreover, they have to be capable of

discriminating among the options in order to have any decision-making

value. In short, they need to be an appropriate sample from the total

scenario sample space.

With respect to probability assessments, "itihe credibility of a

scenario to a subject seems to depend more on the coherence with which its

author has spun the tale than on its intrinsically 'logical' probability of

occurrence" (Spetzler and Stael von Holstein, 1975, p. 347). Kahneman,

Slovic, and Tversky (1982) have compiled an anthology of research studies

demonstrating that, when compared to the tenets of probability and statis-

tical theory, humans have limited appreciation for the cnr: enw.s o0 1ra-

ness, statistical independence, sampling variability, r t'1Th ro•i 4 1-v,

regression effe-,t-, ptc. 7To -1fe l-ogarth (19R7, A . •,•a:

3-18

statistical reasoning is entirely based on the logical structure of

information, causal reasoning is responsive to both content and structure."

Moreover, the causal implications of the stimuli can often mask the logical

structure of the problem. Consequently, it is essential that the evaluator

using decision analysis give substantial care to presenting the scenarios

so that their logical probabilistic structure and, hence, relative likeli-

hood can be better assessed by participating members of the sponsoring

team. This often requires using a decision tree to decompose the scenario

into the critical, uncertain events.

This point can be illustrated by considering an uncertainty dear to

the heart of members of the development team, which i- whether or not the

sponsoring agency can provide the necessary funding level for the expert

system throughout its development cycle. Figure 3-5 presents a highly

simplified, hypothetical probability tree representing only two uncertain

events: whether or not the funding environment is stable and, conditional

upon it, whether or not the funding level will be satisfied.

Cumulative
Probabilities

REQUEST SATISFIED (.56)

STABLE(.) •(8

REQUEST NOT SATISFIED (.14)

(.2,)

REQUEST SATISFIED (.0.1

UNSTABLE

REQUEST NOT SATISFIED (.24)

(8e)

Figure 3-5: A Highly Simplified Probability Tree
for Illustrating the Uncertainty in Funding

for an Fxpert System throughout the Duration of the Development Process

3-19

As you can see, we are assuming a good state of affairs. A stable funding

environment is considered twice as likely as an unstable environment. If

the environment is stable, we are assuming that it is four times as likely

as not that the development team will receive the necessary funding If It

is not stable, then we are assuming the opposite. If one multiplies out

the probabilities for each branch of the tree and then sums the probabil-

ities for the two branches resulting in the necessary funding for the

expert system development effort, one finds, however, that the probabilr-',

that the development team will have the necessary funding is actually only

.62,

The situation gets somewhat more discouraging if one now considers the

probability that the development team will develop an effective expert

system that will be used by the decision maker(s) for whom it is being

built. Figure 3-6 shows the probabilities for developing a "successful"

expert system for each of the four branches of the tree in Figure 3-5.

Cumulative
Probabilities

EFFECTIVE ES (.392)

(.17)
REQUEST SATISFIED

(.8)
(.TE8)

STABLE (.3)

EFFECTIVE ES (.042)

REQUEST NOT SATISFIED rx• (.3)

(2) (.018)

(.7)

EFFECTIVE ES (.0421

"zEQUEST SATISFIED (7

•(.2) 4:TV q(.018)

USALE (.3)

(,3) EFFECTIVE ES (072)

LREQUEST NOT SATISFIED (3)

(.8)

Figure 3-6. A Slightly ExpsindpO~ Pv',fb~h~i~i~ Tree for tbo Iv-i hoti I -iii

3-20

Again, we have assumed a good state of affairs-- two-to-one odds for

developing a "successful" expert system with the "necessary" funding.

However, after multiplying-out all the probabilities in the tree and

summing the probabilities for the appropriate branches, one finds that the

probability of developing this "successful" expert system is 0.548-only a

little better than flipping a coin.

The purpose in presenting what one might consider to be a reasonable,

if not realistic, scenario is three-fold. The first purpose was to

illustrate the importance of considering the structure of a scenario, not

just its content. Substantial care must be given to eliciting probability

assessments when using decision tree analysis, particularly the greater the

ambiguity and the longer the time horizon for the uncertainties of

interest, which is typically the case in the development process. The

second purpose was to provide an alternative perspective on the sad fact

that many expert systems are not successfully implemented. From a statis-

tical perspective, a large number of things have to go right for successful

implementation. And the third purpose was to again emphasize the impor-

tance of considering the uncertainties inherent in decision-making situa-

tions. As the example illustrates, it may be just as important for the

development team as for the sponsoring team to consider these uncertain-

ties. Decision analysis can alert members of the development team as to

the uncertainties in the situation within which they will be working and,

thereby, help further clarify the general requirements that the expert

system will have to satisfy under various future conditions-for example,

if all the "necessary funding" does not actually become available.

In closing this brief discussion of decision tree analysis, it is

important to reiterate that decision tree analysis combines both probabil-

ity and utility assessment. As was illustrated with the payoff matrix

shown in Table 3-1, the "best" option is the one with the highest expected

utility which is calculated for each option by first multiplying the

overall values (i.e., utilities) for the outcomes and the probabilities for

the scenarios, and then summing the products. The payoff matrix can be

expanded (e.g., see Pitz and McKillip, 1984, p. 111) by using (a) a

decision tree to pictorially represent scenarios and, thereby, reflect the

3-21

uncertainty in obtaining the outcomes for the options under consideration;

and (b) a MAUA hierarchy to illustrate that the overall utility for an

alternative, independent of the probability of obtaining it, is a composite

score on multiple attributes. The expected utility for each option under

consideration is the sum of the products for the probabilities for the

scenarios and the utilities for the attributes. Thus, consistent with the

SHOR paradigm, decision tree analysis is designed to assist decision maker

in explicitly evaluating options in relation to hypotheses regarding the

uncertainties inherent in the organization's future environment.

The process of performing a decision tree analysis is typically slow

and difficult, however, for the decision-analytic representation of the

problem can be quite large and the judgments quite extensive. Consequent-

ly, decision tree analysis is most viable if there is sufficient time (and

resources) for the evaluator to work with the sponsoring team when it is

still considering a range of options, that is, prior to Step I in the

development cycle, and preliminary discussions suggest that uncertainties

about the future environment may play a significant role in assessing the

viability of developing an expert system. Once the development process is

underway, however, the utility component is of most concern to test and

evaluation since the probability of alternative future environmental states

is not under the sponsoring or development team's control.

KAUA-BASED COST-BENEFIT ANALYSIS

MAUA-based cost-benefit analysis has been used to help design,

completely on the basis of the decision makers' own judgments, the most

beneficial option packages for various levels of dollar cost. Although

this method is not as widely known as the subjective evaluation methods

described above, it has been successfully used to develop advanced helicop-

ter designs (Adelman, 1984), critical aspects of the U.S. Marine Corps'

annual budget (Watson and Buede, 1987), health and hospital services (Weiss

and Zwahlen, 1982), and the training curriculum for a federal government

agency (Medlin and Adelman, 1989).

3-22

The MAUA-based cost-benefit analysis approach has six basic steps: (1)

divide the problem into independent areas (or "variables") over which

benefits and costs can vary almost independently; then, (2) identify

distinctly different actions (or "levels") on each variable that increase

in benefit and cost; (3) assess the relative benefit and cost of each level

on each variable; (4) assess the relative benefit of one variable against

another by using relative weights on the variables; (5) calculate the

change in benefit to the change in cost ratio for each level of each

variable as one moves from the lowest to the highest level of each vari-

able; and (6) use an optimization algorithm to calculate the efficient

allocations defining the most beneficial package (i.e., one level on each

variable) for varying degrees of (total) cost.

When selecting a set of expert systems, the different variables

represent the different areas for which expert systems are being considered

by the sponsoring team. For example, assume that an organization is

considering the development of expert systems for each of three major

divisions (A, B, and C) within the organization. The initial level on a

variable (e.g., A) may represent either the status quo, which may be "no

expert system," or the cheapest, most "bare-bones" concept for developing

that expert system. In the ease study, the status quo of "no expert

system" is represented by level #0; the "bare-bones" concept is represented

by level #1. The last level on a variable represents the most expensive,

"gold-plated" (yet realistic) conceptualization of the expert system for

that area. The intermediate levels on a variable represent intermediate

conceptualizations of the expert system as one moves from the "bare-bones"

to more "gold-plated" concepts.

A relative benefit scale is established for each variable such that

the initial level is given a value of zero and the "gold-plated" concept is

given a value of 100. Paired comparison techniques are typically used to

determine the relative benefit of the intermediate conceptualizations of

the *xpert system on the variable. In particular, the focus is on how much

bnefit an intermediate level provides between the two endpoints of the

vertable's scale-that is, between the "bare-bones" and "gold-plated"

concepts. For example, is conceptualization #2 (e.g., level #2 on

3-23

variable A) halfway in benefit between the "bare-bones" and "gold-plated"

concepts? If the answer is "yes," then conceptualization #2 would get a

benefit score of 50 on that variable. If the answer is "no," then the

questioning focuses on how much less than 50. For example, is the relative

benefit 10% of the way between the "bare-bones" and "gold-plated" conceptL

or 25% or 40%, etc.? Once a relative benefit score is obtained, the focus

shifts to conceptualization #3 on the variable, which must have a relative

benefit score between that for conceptualization #2 and the gold-plated

conceptualization. In answering these and related, relative-value ques-

tions, a subjective benefit scale is developed for each level of each

variable. [Note: A MAUA hierarchy with utility functions and weights can

be used too, although it is obviously a more complex approach than obtain-

ing pafed-comparison benefit values.]

I:lative importance weights are then used to indicate the relative

benefit of improving (from the initial level to "gold-plated") on each

variable (i.e., A vs. B vs. C in our example). For example, let's assume

that going from the status quo of "no expert system" to "gold-plated on

variable A was thought to be twice as beneficial as doing so on both

variables B and C, which are equally important. If the relative importance

weights sum to 100, then the relative weight on variable A would be 50 and

the relative weights on variables B and C would be 25. The overall benefit

given to any level on any variable can be compared to that for any other

level of another variable (except the initial level for a variable, which

is set to zero to indicate it's the starting point) by multiplying (a) the

relative weights for the variable and (b) the benefit value for the level

within the variable. For example, let's assume that conceptualization #3

for variable A had a within-variable benefit value of 50. Since, in our

example, variable A has a relative weight of 50 and variable B has a

relative weight of 25, conceptualization #3 on variable A has the same

overall benefit as the gold-plated concept on variable B because 50 x 50

equals 100 x 25. [Note: The overall benefit of each level for each

variable in the design could be assessed directly using paired comparison

techniques. However, experience suggests that participants find the above

procedure easier, particularly when there are many levels and variables.)

3-24

In addition, a cost estimate also needs to be obtained for each

conceptualization, that is, for each level of each variable. The cost

estimate for the first level on each variable Is important only in provid-

ing a reference point, for the analysis assumes that the starting point (or

first package of expert systems) is represented by the initial level on

each variable. The cost estimates could be in absolute dollars or in

"relative costs," depending upon which one the participants (or more

likely, the personnel responsible for software cost estimation) feel more

confident in using in the analysis. (Note: Conceptually, the cost could

be any resource with allocation constraints.) At this point one can

calculate the overall incremental benefits and costs of moving from one

level to another on each variable.

The goal is to maximize the benefit for the set of expert systems at

any given level of total dollar costs-that is, to define the "efficient

frontier," such as the hypothetical one shown in Figure 3-7. Starting with

the first level on all the variables, which we have defined as the set of

expert systems with the lowest possible benefit relative to any other set,

we will follow three steps. First, we will calculate the incremental

change in benefit to change in cost ratio for each level of each variable

as one moves from the lowest to the highest level of each variable.

Second, we will order the levels on the basis of this ratio. Third, we

will sequentially select the level with the highest change in benefit to

change in cost ratio. Thus, each incremental point on the efficient

frontier will represent a set of expert systems that was identical to the

one that preceded it except for one change, that remaining level with the

highest change in benefit to change in cost level at that time. [Notes:

If the analysis shows dips in the level-to-level analysis, incremental

benefit-to-cost ratios are calculated across multiple levels. Although

this algorithm may not derive all the points on the efficient frontier, all

the points derived are on the frontier. Moreover, experience has shown

that it is easier than other approaches (such as integer programming) for

decision makers to understand the algorithm and follow its implications.

Finally, it can be readily programmed for, and will operate quickly on,

personal computers.]

3-25

80+

N I
E I
F I
I I
T 40+

I2

I
I

S I
T 0+

10 16 2228 35 41

Figure 3-7: A Hypothetical Efficient Frontier

The !IAUA-based cost-benefit analysis can also be used to identify the

most beneficial configuration of components of a particular expert system

at different levels of cost. In this case, the different components of the

expert system represent the different variables. The different potential

levels of sophistication of each component represent the levels on the

variables. Relative benefit values are obtained within and between

variables, and costs are obtained for each level. And the algorithm

described above is used to generate points on the efficient frontier

indicating the package of component parts providing the most benefit at

different levels of total cost.

CONSTRUCTING QUESTIONNAIRES TO ELICIT OPINIONS

Thus far, Chapter 3 has considered a number of different subiective

test and evaluation methods, most notably MAUA. The focus on these methods

has been toward helping the sponsoring and development team: (a) identify

3-26

evaluation criteria early in (if not prior to) development to guide the

development (as well as testing) process; (b) convert test scores into

utility measures; and (c) utilize explicit procedures for weighting, or in

some other fashion integrating test results on all the criteria into an

overall assessment of the expert system's adequacy. As important as

obtaining an overall score for the expert system is assessing the expert

system's weaknesses, particularly for important criteria. This feedback

can, in turn, guide subsequent development efforts and, thereby, effective-

ly integrate test and evaluation into the development process.

In this section of Chapter 3, we consider the construction of subjec-

tive questionnaires for obtaining potential users' opinions about Cne

expert system. In particular, we are concerned about users' judgments of

the expert system's performance and usability. Questionnaires were used to

obtain these judgments for the DART expert system described in Chapter 1.

In this section, we want to go over the basic issues inherent in question-

naire construction. Throughout the discussion we will assume that the

users' responses to the questionnaire are used to score the expert system

on subjective criteria in the evaluation hierarchy, such as in the one

described in the next section of this chapter (and displayed in Table 2-1).

We begin this section by first defining two critical measurement

concepts, reliability and validity. Reliability means that the measurement

instrument (e.g., questicnnaire) gives the same results when it is used on

two different occasions. The key idea here is "replication;" one can

repeat the measurement process with the same result. A basic assumption is

that there have been no changes in the object being measured (e.g., the

expert system) in-between the two measurement periods. By "validity" we

mean that the instrument is measuring what it is supposed to measure. An

instrument can be reliable (i.e., it produces the same results upon

replication), but invalid (i.e.. it reliably measures the wrong thing).

However, an instrument cannot be valid if it is totally unreliable because

ttii latter implies that it will give very different answeri. when used to

measure the same thing on two or more occasions.

02

3-27

We now consider how these two concepts were assessed for the question-

naire used in the test and evaluation of the DART expert system. (For more

information, see Adelman et al., 1985.) Prior to doing so, however, we

will review the characteristics of the DART questionnaire. These are the

characteristics you should have in your questionnaires, assuming, of

course, that you use the same kind of questionnaire to obtain users'

opinions about an expert system. It is important to note that there are

other types of questionnaires. Two other types will also be overviewed

later in this section.

Characteristics of the DART Ouestionnaire

As you remember, the DART questionnaire was designed to obtain users'

opinions about DART with respect to the evaluation criteria identified in

Table 1-1. The questionnaire had a total of 121 questions. Most of the

questions assessed the bottom-level attributes in Table 1-1. However, 6

questions directly assessed overall utility (node 0.0 in Table 1-1), 2

questions directly assessed decision process quality (node 3.3 in Table I-

I), and 3 questions each assessed the quality of the training sessions and

test scenarios (neither of which were evaluation criteria in Table 1-1,

although important to the test and evaluation team to assess for more

general reasons).

Two questions from the DART questionnaire are presented below .;o that

one can get a feeling for the kinds of questions used in the questionnaire.

The first question measures "response time" (attribute #1.2.1.4 in the

hierarchy); the second question measures "acceptability of time for task

accomplishment" (attribute #2.1.1.1).

I had to wait too long for the DART aid to respond to my inputs.

Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

0
3-28

Use of the DART aid will not slow down the identification process now
used in the Tactical Air Control System.

Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

As can be seen, all questions required the participant to respond on a

eleven-point scale from 0 (very strongly disagree) to 10 (very strongly

agree), with 5 being "neither disagree nor agree." This type of scale is

referred to as a Likert (1932) scale after Rensis Likert, the psychologist

who first developed it. The length of the scale (i.e., eleven points) and

the end points (i.e., 0 and 10) are arbitrary. We could have used a 3-,

5-, 7- or whatever point scale we wanted. We chose an eleven-pci-' zcale

in order to give the users plenty of room to express the extent to which

they agreed or disagreed with each question which was written in the form

of a statement. The use of only positive numbers for the scale values was

also arbitrary. We could have used negative numbers to represent disagree-

ment and the 0-point to represent "Neither Disagree Nor Agree." We chose

to use positive numbers because, as was illustrated by the first question

above, sometimes we wanted the user to disagree with the statement in order

to score DART highly. Therefore, we were concerned that the use of

negative numbers might be confusing.

There were two or more questions for each MOE criterion in an effort

to achieve greater confidence in the criterion scores. In addition, this

permitted us to calculate a split-half reliability measure, which is

described in the next subsection. The number in the parentheses to the

right of each bottom-level attribute in Table 1-1 indicates the number of

questions assessing it. The actaal number depended on the availability of

previously written questions assessing the criterion (e.g., from Sage and

White, 1980), the ease in writing "different-sounding" questions for the

criterion, and its depth in the hierarchy. We tended to use more questions

when we were measuring bottom-level attributes high in the hierarchy. For

example, we used seven questions to measure "decision accuracy" (attribute

**3.1), but only two questions to measure "response time" (attribute

#1.2 1.4).

3-29

Half the questions for each criterion were presented in each half of

the questionnaire in an effort to prevent the questions' order in the

questionnaire from affecting the attributes' scores. And, as will be seen,

this procedure is also appropriate for calculating a split-half reliability

measure. In most cases, a high score indicated good performance, but

typically for one question measuring each criterion, a low score indicated

good performance in an effort to ensure that the participants paid careful

attention to the questions. Prior to calculating attribute scores, the

users' responses were rescaled as if the question were asked in a positive

fashion. DART's score on a bottom-level attribute was the mean score of

the participants' responses to the questions assessing it. Values for

criteria moving up the hierarchy were the mean score for the criteria below

it.

As we noted in Chapter 1, by averaging lower-level attribute scores to

obtain upper-level criterion scores, one is giving each criterion equal

weight at its place in the hierarchy. For example, by averaging the mean

scores for "training" (attribute #1.1.-), "work style" (attribute #1.1.2),

and "operational needs" (attribute #1.1.3), each of three attributes

received a relative weight of 0.333 in determining the score on "match with

personnel" (attribute #1.1). Although it was quite possible that the

participating domain experts may have thought that certain bottom-level

criteria were more important than others, members of the test and evalua-

tion team thought it inappropriate to have the (DART) experts differential-

ly weight these criteria at the time of the evaluation because we wanted to

use the same weights for evaluating all five prototypes being developed on

the contract in order to provide a common evaluation baseline.

In closing this subsection, we want to emphasize that you should keep

the following points in mind when developing the questions for your

questionnaire. First, remember that people do not like completing ques-

tionnaires. Some people complete them as quickly as possible, often not

reading the questions carefully. Other people seem to scrutinize every

word and nuance in the question, just trying to find something wrong w1t0,

it. Consequently, try to keep the questions short and to the point. Do

not use qualifying phrases in a question if you can help it because

3-30

respondents may inadvertently respond to the qualifying phrase instead of

the principal one. In a similar vein, minimize the use of the word "not"

because respondents sometimes misinterpret it or fail to recognize it when

they are rushing through a questionnaire.

Second, have a colleague critically review your questions. Ask that

colleague to suggest better ways of asking any questions they are having

trouble answering. Third, pilot-test your questionnaire with representa-

tive users before you actually use it to obtain users' opinions of an

expert system. Ask the respondents to think aloud when they answer the

questions so you can assess whether others are interpreting the questions

in the way that you intended. If they have no objections, tape-record the

session so that you don't have to rely on your memory. Revise questions

that are being misinterpreted by the pilot participants during the session

to see if you can reword them in a way that removes the ambiguities.

Continue pilot-testing the questionnaire until most (if not all) questions

are interpreted in the way you intended.

Reliability and Validity of the DART Ouestionnaire

We now turn to consider how we assessed the reliability and validity

of the DART questionnaire. Since only four technical representatives and

three substantive domain experts participated in the DART test and evalua-

ticn, the reliability and validity assessments used the responses from all

the tzchnical representatives and domain users who participated in testing

and evaluating the five decision-aiding system prototypes developed on the

contract. Remember, there were two evaluation sessions for each system.

In all cases, technical representatives from the Rome Air Development

Center (RADC) participated in che first session, and Air Force substantive

experts in the decision task for which the system was designed participated

in the second session. In general, each session followed the same format:

the first day was dedicated to providing a detailed overview of the system;

the second day was dedicated to providing the participants with "hands-on"

training in using the system; on the third day the participants worked test

problems with and without the system; and on the fourth day the partici-

3-31

pants completed the questionnaires and discussed the system prototype with

members of the test, development. and sponsoring teams.

In total, 15 Air Fcrce substantive experts and 13 RADC technical

representatives participated in the sessions. The substantive experts, all

of whom were selected by the Tactical Air Command, had years of experience

in the tactical decision-making area for which the system was developed;

most had minimal computer science training. In contrast, the technical

representatives had minimal, if any, substantive expertise in the areas for

which the aids were developed. Eleven of the technical representatives

were Air Force personnel who, in most cases, had just recently received an

undergraduat-e degree and taken computer science coursework; the other two

technical representatives were civilians with technical backgrounds who had

worked on RADC projects for at least two years. In a number of cases, the

same technical representative participated in more than one evaluation. In

order to ensure that the results presented below were not skewed by the

opinion of these participants, we used only the questionnaire responses

from their first evaluation session. Finally, it should be mentioned here

chat the tecnnical representatives' responses for one of the five systems

were not included in the analyses because the system was rVt functioning

sufficiently well to permit an accurate assessment of its strengths and

weaknesses.

Assessina the Reliability of the DART Questionnaire

Split-half reliability and test-retest -eliability measures were

calculated. Split-half reliability is a measure that relates the two

halves of the questionnaire. A split-half reliability measure was possible

because two or more questions were used to assess the participants'

responses for each attribute in the KAUA evaluation hierarchy, and the

questions were divided between the two halves of the questionnaire. If the

questionnaire was a reliable measurement instrument, then there should be a

high correlation between the two halves of the qucstionnaire, for presum-

ably the questions were measuring the same attribute. The following

formula from Culliksen (1950) was used to calculate the split-half relia-

bility of the questionnaire:

3-32

1 j I3-2 _
xx 2

where

r" is the split-half reliability of the questionnaire,xx

2 is the variance of the first half of the questionnaire,
xI

2 is the v,-iance of the second half of the questionnaire, and
x 2

2 is the variance of the sum of the scores on the two halves of the
x questionnaire (x - xI + x2).

The split-half reliability measure was 0.741 for the substantive experts

and 0.707 for the technical representatives; both reliability measures were

significantly different than zero at the p < 0.01 level (df - x, - 58 - 2 -

56).

The most conservative measure of a questionnaire's reliability is

obtained by re-administering the questionnaire a second time after a month

or more has passed, and then correlating the participants' responses to the

qutestions. Three of the technical representatives, each for different

prototypes, agreed to complete the questionnaire a second time. Six to

eight weels separated the second completion of the questionnaire, in an

effort to ensure that the Darticipants remembered the prototypes' general

characteristics but not their responses to specific questions. The three

test-retest correlations were 0 44, 0.61, and 0.56. Although these

correlations may seemn low to the rcader. it must be remembered that, unlike

questionnaires assessing personality or attitude traits which are presumed

to be stable and unchanging, we were assessing the participants' memory of

tmL system's many characteristics, whihh is presumed to be uiore unstable

and subject to change. All three correlations were significantly different

from zero at the p < 0.01 significance level (df - x, + x 2 - 2 - 114).

3-33

These results indicate that the questionnaire is a reliable instru-

ment, that both halves are reliable, and that if the questionnaire is used

to measure an expert system at two different times and there is no dif-

ferp:,ce in the system in the interim, the tester will obtain the same

opir ions from test participants.

Assessing the Validity of the DART Questionnaire

Three different fo- f validity are important for questionnaires.

First, face (or content) validity implies that, at least on the surface, a

questionnaire appears to be measuring what it is supposed to be measuring.

Face validity was assur-d in our questionnaire by having a retired Air

Force lieutenant colonel-who was a substantive expert in the tactical

decision-making problems for which the prototypes were developed--write the

questions.

Second, predictive (or external) validity implies that the instrument

is consistent and agrees with another established measure of the same

attribute. To measure the questionnaire's predictive validity, we used the

same basic approach as that used by Bailey and Pearson (1983); we corre-

lated the participants' global evaluations of the prototype with the

results of the questionnaire. Specifically, we correlated the partici-

pants' mean responses to the six questions directly asking about the

prototype's overall utility with the participants' scores for the proto-

types based on the MAUA evaluation hierarchy (i.e., the value for node

0.0). The correlation for the 15 experts was 0.85 (p < 0.01, df - 13), and

the correlation for the 13 technical representatives was 0.60 (p < 0.05, df

- 11).

Third, construct validity examines the theoretical adequacy of the

components of the construct being measured, typically by comparing the

scores obtained from two separate measuring instruments aimed at the same

construct. We reasoned that if the questionnaire had construct validity,

then it should be possible to relate aspects of the system prototypes that

the participants indicated they liked and disliked in the open-ended

questionnaire to the attributes in the MAUA hierarchy that were scored high

3-34

and low, respectively. Two specific steps were required to calculate a

measure of construct validity. First, for each prototype, we matched those

aspects of the prototype that the substantive experts indicated they liked

or disliked in the open-ended questionnaire to specific attributes in the

MAUA hierarchy. Second, for each prototype, we rank-ordered the attributes

according to their mean score on the eleven-point scale. We found that 78

percent of the matched attributes fell into either the top 30 percent or

the bottom 30 percent of the distribution of rank-ordered attributes,

thereby indicating a relationship between both of our questionnaires and

construct validity.

Other Inves of Questionnaires

In this last subsection, we will consider two other types of question-

naires. The first type is the traditional open-ended questionnaire; the

second type is designed to directly score the system on the bottom-level

attributes in a KAUA hierarchy. Although we will not provide additional

analysis here, the reader should remember that reliability and validity are

also important concepts for these questionnaires too.

An open-ended questionnaire is analogous to an interview in that it

gives respondents an opportunity to say what they want to say. In fact, an

open-ended questionnaire should be given in conjunction with an interview

or round-table discussion. The use of open-ended questionnaires, inter-

views, and discussions is important because we don't want to loose critical

information simply because we didn't ask the right question. More impor-

tantly, we want to give the users an opportunity to elaborate on their

numeric answers. For example, we want them to tell us why they gave the

system a "0" on "usability" or "confidence" or whatever. Moreover, we want

them to tell us what changes, in their opinion, would improve thn system's

scores on those criteria for which it is scoring poorly. Although the

numbers tell us how the expert system is scoring in the users' eyes, it

Anesn't tell us why this is so. To obtain the latter, one needs to use

some form of open-ended questionnaire or interview.

3-35

The ten questions used in the DART open-ended questionnaire are pre-

sented below. We provided space after each question for the users'

responses, although it is omitted below. In examining the questions you

will notice that, while we wanted the users to tell us (a) what they

considered the system's strengths and weaknesses to be, and (b) how to

improve the system, we still gave them some direction in order to focus

their responses. In addition, we used the questionnaire as a means to

document the users' experience and background.

1. What did you like and/or find most useful about the DART aid?

2. What did you dislike and/or find to be a hindrance about the
DART aid?

3. What specific changes and/or modifications would you suggest
regarding the following characteristics of the DART aid? Write
NONE if you have no suggestions for improving the particular
characteristics:

a) regarding the aid's general technical approach to iden-
tification, and its degrees of belief;

b) regarding the different types of expert knowledge stored
in the aid;

c) regarding the value of the explanation mechanism in the
DART aid;

d) regarding the user interface with the DART aid;

e) regarding the DART's graphic displays.

4. What would you envision to be the future potential of this aid
in your present or most recent operational environment. Why?

5. Were the instructions sufficient to enable you to efficiently
use this aid? Comments?

6. Where do you feel a second-generation, operational version of
the aid would receive good acceptance. Why?

7. What would you envision to be the future training potential of
the DART aid? Why?

8. Please state your experience in performing the task you
performed here today. Also, please state relevant duty
assignments, and the number of years you performed them.

3-36

9. Please state your level of experience and training with
computers and decision aids.

10. Please give any other comments that you feel are relevant to
this questionnaire.

The second type of questionnaire is designed to generate utility

scores for the expert system on the bottom-level attributes in an MAUA

evaluation hierarchy; that is, the user scores the system on a 0 to 100 (or

0 to 1.0 or 10 or whatever) value scale for each of the bottom-level

attributes. For example, instead of answering a series of questions about

the system's response time, the user would score the acceptability of the

system's response time on a 0 to 100 acceptability scale.

It is important to note at the outset that this type of questionnaire

is difficult for users to complete, for it represents the utility scoring

part of MAU analysis but without access to an analyst or computer program.

By "utility scoring" we mean that it not only involves scoring the expert

system on a subjective scale (e.g., for "ease of use"), but then translat-

ing that performance score into a utility score (e.g., the acceptability of

the system's "ease of use"). In the approach described below, accep-

tability is defined relative to the extent that the system meets the user's

performance expectations for a criterion. Here we will briefly introduce

some important concepts to keep in mind when developing such a question-

naire.

Figure 3-8 presents an example of a questionnaire for obtaining

utility scores on the bottom-level attributes measuring "Performance:Judg-

ment" and "Usability" in Table 2-1. In particular, Figure 3-8 is request-

Ing that the user indicate the adequacy of the system's "Response Time

Performance" in terms of the amount of time the expert system took to

respond to the operator's inputs and provide outputs. The "50" point means

that the system fully meets the user's performance expectations for the

system on the evaluation criterion being considered (in keeping with the

scale recommended in the last section of this chapter). The "0" means the

system fails the performance expectations. The "100" means the system not

only fully meets the performance expectations, but greatly exceeds them.

3-37

I. RESPONSE TIME PERFORMANCE

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

" Have you previously expressed performance expectations for this criterion? (Circle Iyes, or
a fO.')

Yes No

"* Have you previously heard anyone else express performance expectations? If yes, please
commenL

Yes No

" WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

"* NUMERICAL SCORE:

"* REASONS FOR SCORE:

Figure 3-8: An FAmple of a Questionnaire for Obtaining Utility Scoret

3-38

More generally, scores below "50" mean that, in the user's judgment,

the system was in some fashion deficient on the criterion; scores above

"50" mean that the system was providing added value on the criterion. The

scale permits the user to numerically score the level of deficiency or the

level of added value. For example, let's consider evaluating the system on

Response Time. If the system met the user's performance expectations for

an acceptable waiting period between the inputs and the system's response

to them, then the user would give it a score of "50." Let's assume that

the user considered the system's response time deficient (i.e., less than

"50"), but not a complete failure (i.e., greater than "0"). Then the

question is, "What is its numerical level of deficiency between 0 and 50?"

If the deficiency was very minor in the user's mind, then the score would

be close to 50 (e.g., greater than or equal to 45, but less than 50). On

the other hand, if the deficiency was very great but still not "0," then

the score would be close to 0 (e.g., less than or equal to 5, but greater

than 0). If the user thought the level of deficiency was about halfway

between meeting the expectation and failing it, the user would give the

system a score of 25; if it was a quarter-of-the-way, he or she would score

it 12.5 and so forth. In short, the user would use the bottom-half of the

scale to numerically specify the expert system's level of deficiency on the

evaluation criterion. In addition, of course, testers need to know the

reason(s) for the user's score. Consequently, space is provided to tell us

what the user's performance expectations were, assuming he or -Ie had ones,

and the reasons for the score on the criterion.

In a similar fashion, the user can use the scale between 50 and 100 to

numerically specify the level of "added value" performance on the cri-

terion. For example, if the system barely exceeded the user's performance

expectations for Response Time, tben it would receive a score slightly

above 50. If it considerably exceeded the performance expectations but was

not a 100, it might receive an 85, 90, 95, etc. If the degree of added

value benefit provided by the system was about halfway between meeting the

,iser's performance expectations and greatly exceeding it, then you would

score it 75. If the added-value benefit was a quarter-of-the-way, the

system would receive a score of 62.5; if it was three-quarters, it would

receive a score of 87.5 and so forth. Again, it is important to know the

3-39

system is providing added-value on the criterion-that is, the reasons for

the score.

The questionnaire would contain such a scoring sheet, or some deriva-

tive of the above approach, for each bottom-level attribute in the MAUA

evaluation hierarchy requiring the user's opinion of the expert system. As

you can imagine, these are not easy judgments to make. As a means of

helping users, we first ask them to think about their performance expecta-

tions for the system on the criterion. What level of performance do they

consider acceptable (i.e., a score of "50")? We give them room to write

their performance expectations on the scoring sheet. We also give them an

opportunity to indicate (a) whether they have previously expressed perfor-

mance expectations for the criterion and (b) whether they have heard anyone

else express performance expectations. Then we ask that they provide a

numerical score, and the reasons for it, in the space provided. If they

cannot (or do not want to) score the system on a particular criterion, we

do not force them to do so. A number of omissions would indicate the

inadequacy of this type of questionnaire, and we would subsequently use the

Likert-type with open-ended questionnaires and/or interviews.

Summary

All the questionnaires we've considered here attempt to capture the

users' opinions about the expert system. Open-ended questionnaires, inter-

views, and round-table discussions are important because they give users an

opportunity to indicate what they liked and disliked about the system, and

how they would improve it. The short-answer, Likert-type questionnaires

are important because they attempt to quantify the users' opinions. In

particular, by building the short-answer questionnaire around an MAUA

evaluation hierarchy, this familiar type of questionnaire provides a means

for scoring the expert system on the more "subjective" attributes in the

hierarchy. Finally, the "utility" questionnaire attempts to go one step

further and translate the scores on these attributes into utility values.

With the Lilert-type questionnaire used in the DART test and evalua-

tion, we assumed a linear scale for converting the users' responses (i.e.,

3-40

"scores") into utility values on the attributes. The utility questionnaire

does not make this assumption but, instead, attempts to directly assess the

utility values using the "50" point as a reference point. For example, a

user might give an expert system a score of "7" (using the 0 to 10 point

Likert scale) on "response time." However that "7' may or may not actually

_tet the user's expectations for that criterion. By attempting to measure

the extent to which the system meets the user's expectations for "response

time," we are attempting to assess the value that the user places on the

expert system's performance on this attribute.

In closing this subsection, it is important to emphasize that the type

of responses being elicited with a "utility" questionnaire, although dif-

ficult, are at the heart of quantifying the value that users place on the

expert system's performance for all the attributes, not just the more

subjective ones. Remember, "scoring" and "weighting" are two separate

steps in applying MAUA. The utility scale converts the expert system's

scores on the different scales being used to measure the different at-

tributes (i.e., the proverbial "apples and oranges") into a common value

scale. The relative weights indicate the attributes' relative importance.

How far one wants to go in the process of converting test scores into

overall utility scores is a critical question for the test and evaluation

team to consider. It is our opinion that one needs to implement the entire

MAUA process to most effectively focus expert system development on the

users' objectives and, thereby, integrate test and evaluation into the

development process.

The Appendix of this volume contains both a Likert-scale questionnaire

and a utility-scale questionnaire that can be used in conjunction with the

MAUA framework presented below to test an expert system. These question-

naires are complete with instructinns on their use, and they have been

designed according to the guidelines described above.

70OPOSED MAUA FRAMEWORK FOR TESTING AND EVALUATING EXPERT SYSTEMS

The rest of this chapter contains the description of our proposed MAUA

framework for testing and evaluating expert systems. The attributes in

3-41

this framework were developed iteratively by top-down decomposition of

important aspects of expert systems, and bottom-up aggregation of software

quality metrics. The specific attributes included were identified as a

result of our own research and a review of related work by Ulvila et al.

(1987), Riedel and Pitz (1986), Rockmore et al. (1982), Kirk and Murray

(1988), Adelman et al. (1985), Klein and Brezovic (1988), and Tong et al.

(1987). The attributes described are generic and are potentially ap-

plicable to any expert system. However, the relative importance of an

attribute will be determined by specific features of the system and its

intended use. We discuss this more in Chapter 7. Similarly, the measure-

ment scales for the attributes may vary from one system to another, and the

proper measurement technique (subjective, empirical, or technical) will

vary from attribute to attribute and from system to system depending on the

nature of the test, the resources available for the test, the importance of

the attribute, and other conditions. We do, however, provide guidance for

developing measurement scales, and we present, in the Appendix, two

questionnaires that can be used to assess the system against judgmentally

determined performance attributes and most usability attributes.

In addition to being generic, the framework is also comprehensive. It

purports to address all important aspects of expert systems. In this

regard, it differs from most of the expert system verification, validation,

and testing work done to date, including that referenced above. Some

researchers are paying attention to assessments of an expert system's

knowledge-base structure and content. Others stress the quality of the

system's answers. None of the other work addresses both of these aspects

and ties them together with service requirements and individual and

organizational usability. Still, specifics of an expert system or its

intended operation may require a tester to add a few unique attributes.

An experienced software tester will notice that one aspect of conven-

tioral software testing is left out of our framework--namely, software

design and coding standards of the type address by DoD-STD 2167, DoD-STD-

1679A, MIL-STD-1679, and JCMPOINST 8020.1 for conventional software.

Ulvila et al. (1987) attempt an application of these standards to Common

Lisp, a widely used expert system language. The fit is not especially

3-42

good, and we feel that the state of development of generally accepted

software engineering practice for expert systems is not yet developed

enough to have a codified set of good or acceptable design and coding

standards. Consequently, these items are not in our set of attLibute. As

the field of expert systems matures, such standards may be developed and

they should be added to our framework at that time.

Chapter 7 demonstrates how this framework is used to pull the testing

effort together. A key aspect in "pulling it all together" is a four-step

approach to using the framework in Figure 7-1 (which is a reproduction of

Figure 3-9). First, establish the relative importance of the different

major areas (the top level in the framework: knowledge base, inference

engine, "service," performance, and usability), then sub-areas, and then

attributes. This information is then refined into weights. Second,

examine each attribute, determine its measure, and determine how to collect

that information. Third, collect that information about the system being

tested. Fourth, process the information through the MAUA. Fifth, evaluate

the results by comparisons between actual results and the desired or

* required results.

There are other views of software testing. These include: software

quality metrics, validation versus verification, and static versus dynamic

testing. The framework that we present is compatible with these other

views of testing as discussed in Chapter 8.

Framework and Attribute Definitions

Figure 3-9 shows our MAU proposed framework for testing and evaluating

expert systems. The overall assessment of the expert system is composed of

five criteria: knowledge base, inference engine, service requirements,

performance, and usability. These are subdivided to the level of at-

tributes as described below.

KNOWLEDGE BASE. These attributes refer to the structure and content

of the expert system's knowledge base. While the descriptions below are

phrased in terms of a rule base, analogous attributes would apply to a

3-43

z

-j 0

U, L

a- 0-

< w
z (

w "A 004

M w CL-
cc x

CL 0)

:3 U
Cr 0u

ýja zO"(

ULU

CLCuj

"> U) 0.r

0w 0

z 10

3030 00

000 00 0
0U b- 00 LI.:.w

0 ~ w
Eu z cl

S2 .- z J1

MM§0 i CL

U, CC w u

OW *00 0)a

LU

co A wWt

0L - 0

Lug 3-44

frame-based expert system. (See Hayes, 1981, for a discussion of the

logical equivalents of rule-based and frame-based systems.)

Structure

Logical Consistency. The following attributes would limit the consis-

tency (or correspondence) and efficiency of a knowledge base. Redundant

rules are rules or groups of rules that have essentially the same condi-

tions and conclusions. Redundancy can be due to duplicate rules or the

creation of equivalent rules (rule groups) by wording variations in the

names given to variables, or the order in which they are processed.

Subsumed rules occur when one rule's (or group of rules') meaning is

already expressed in another rule (or group of rules) that reaches the same

conclusion from similar but less restrictive conditions. Conflicting rules

are rules (or groups of rules) that use the same conditions, but result in

different conclusions, or rules whose combination violates principles of

logic (e.g., transitivity). Circular rules are rules that lead one back to

an initial (or intermediate) condition instead of a conclusion.

Logical Completeness. A knowledge base is complete if it has no holes

or gaps in its logic. The following attributes indicate a logical incom-

pleteness. Unreferenced attribute values are values on a condition that

are not defined; consequently, their occurrence cannot result in a con-

clusion. Illegal attribute values are values on a condition that are

outside the acceptable set or range of values for that condition. An

upreachable conclusion is a conclusion that cannot be triggered by the

rules combining conditions. Dead ends are rules that do not connect input

conditions with output conclusions.

Content

Functional Completeness is the extent to which the knowledge base

addresses all domain conditions. All desired inputs: the knowledge base

can handle all input conditions that need to be addressed. Applica-

tion/conclusion completely covered: the knowledge base can trigger all

output conclusions that need to be addressed. Identified knowledge

3-45

limitations: the rules in the knowledge base can tell the user if input

conditions currently being processed cannot be addressed. Analogously, if

the expert system is such that a user can specify a conclusion in order to

identify the input conditions that would generate it (e.g., as in a

backward-chaining system), an expert system that was knowledgeable of its

limitations would tell users if a conclusion currently being processed as

input could not be addressed.

Predictive Accuracy. The following attributes address the accuracy

and adequacy of the knowledge base. Problems here may also be related to

problems of performance. Accuracy of facts: the quality of the uncondi-

tional statements in the knowledge base. Accuracy of rules: the quality

of the conditional statements in the knowledge base representing expert

judgment. Knowledge representation acceptability: vhether or not the

scheme for representing knowledge is acceptable to other domain experts and

knowledge engineers, Adequacy of source: the quality of the persons or

documentation used to create the knowledge base. Modifiability of know-

ledge base: the extent to which the knowledge base can be changed and the

control over that change,

INFERENCE ENGINE: the extent to which the inference engine provides

error-free propagation of rules, frames, probabilities, or other represen-

tation of knowledge or uncertainties used in the system.

"SERVICE" refers to aspects of the system (computer and others) in

which the expert will operate.

Compater 5ystem. Design: the extent to which the expert system runs

on the approved computer hardware and operating system and utilizes the

preferred complement of equipment and features. In some cases, the design

system will be stated in a requirements document; in other cases, the

tester may need to survey available equipment at the intended installation.

Portability: how easily the expert system can be transferred to other

computer systems.

3-46

Computer Usage. Se -up time: the amount of time required for the

computer operator to locate and load the program (if any) and the time to

activate the program. Set-up time should be measured under the expected

operating conditions. Run time: the amount of time required to run the

program with a realistic set of input data. This attribute refers only tc

the time that the computer program takes to run; the time needed for the

user is under PERFORMANCE factors. Space requirements: the amount of RAM,

disk, or other space required by the program. Hardware reliability: the

percentage of time the computer system could be expected to be operating

effectively. Hardware capability: the computer system's total amount of

RAM, disk, or other space. Effect of feature use/jumping: the extent to

which moving from various parts of the program causes errors. Degradation:

how well the program saves data and analyses and permits continuation alter

an unexpected program or system crash or power outage. Handling input

errors: the extent to which the program prohibits a program crash and

tells the user what to do after an input mistake.

System Integration. Formats: the extent to which the program uses

input and output formats that are consistent with the intended use. This

includes any mandated Gn standard formats that are specific to the intended

user organization. Data requirements: the extent to which the program's

data requirements are consistent in content, quantity, quality, and

timeliness with those available to the intended user organization. The

expert system should also be able to interact with specified and appropri-

ate databases and communications systems. Documentation: the adequacy of

material regarding the program's use and maintenance. Copies of computer

code and its supporting documentation should be complete and under-

standable, and should allow maintenance by the user organization. (All

applicable software documentation standards should be met.) Skill require-

ments: the extent to which the program can be operated by appropriately

skilled individuals. The appropriate skill requirement includes grade

level (for military enlisted, military officer, or civilian personnel),

iisers' technical bacl round, and training requirements. The appropriate

level may be specified in requirements or may be determined by reference to

the organizational setting of its intended use and to the personnel

*assigned to that setting.

3-47

PERFORMANCE refers to the operation of the expert system and the user.

It includes both comparisons with ground truth and judgmental assessments.

Performance against Ground Truth. Speed: the amount of time it takes

a user working with the expert system to solve representative problems.

Accuracy: the degree of overlap in the distributions of belief values when

the hypothesis is true versus false (see Chapter 5). Bias: the difference

in the proportion of false negatives (hypothesis is true but system says

false) to false positives (hypothesis is false, but system say it's true)

(see Chapter 5).

Judgmental Performance. Response time: the judgments of users

regarding the adequacy of the amount of time the expert system takes to

react to inputs. Time to accomplish task: the judgments of users regard-

ing the adequacy of the amount of time required to perform the task when

using the expert system. Quality of answers: the judgments of users and

experts regarding the system's capability. Quality of reasons: the

judgments of users and experts regarding the adequacy of the system's

justification for its answers.

USABILITY is the extent to which the expert system, or parts of the

expert system, is used, is acceptable to individuals, and is acceptable to

the organization.

Observable Usability includes aspects of usability that a tester can

observe (or a system can record) during a test without asking the test sub-

jects. Extent of use: how much users employ the expert system to perform

the task (e.g., the proportion of time that the system was used to

accomplish tasks assigned in a test). Manner of use: the way in which

users employ the system and its features, including the procedures to

access different modules, the way that intermediate and final outputs are

incorporated into the user's results, and the use of interfaces. Features

used: the extent to which different aspects of the expert system are

employed by users.

3-48

Opinions about Usability. Confidence: how confident users feel in

taking actions based on working with the expert sy;tern, Ease of use: how

easy users judge the system is to uWt oter L1hey tkave completed traiuing

and become familiar with the system. Acceptability of person/machine

interaction process: the extent to which users assess that they and the

system are performing the tasks or activities for which they are best

suited. Acceptability of results: the users' judgments regarding the

adequacy of the system's capability. Acceptability of representation

scheme: the users' judgments regarding the adequacy of the system's way of

presenting knowledge, Input/output: the user's judgment about the

adequacy of the extent, display, and manner of accessing the expert

system's input and output,

Scope of Application: the users' judgments regarding the adequacy of

the expert system in addressing domain problems.

Explanation. Adequacy of presentation and trace: the users' judg-

ments regarding the acceptability of the system's presentation of its

reasoning process. Transparency of expert system: the extent to which the

system's reasoning process is clear and understandable to its users.

Organizational Impact. Impact on work style, workload, skills, and

training: the judgments of users regarding the impact of the expert system

on how they do their job, or the skills and training required to perform it

effectively. Impact on organizational procedures and structure: the judg-

ments of users regarding the impact of the expert system on the organiza-

tion's operations.

Measurement Scales for Attributes

Appropriate scales for the attributes may differ from one expert

system to another. Although it is impossible to set scales that will apply

to every expert system in every operating condition and every intended use,

we can suggest scales that the tester should consider. These are given

below. Some suggested scales are simple "Yes or No" categorizations,

others are natural units such as minutes, still others are percentages.

3-49

These may be helpful in establishing consistent frames for assessing the

performance of a system that is being tested. We have avoided guidance on

specific criteria of acceptability (eg., "set-up time should be less than

10 minutes") because such criteria depend critically on specifics of the

expert system and its intended use. We feel that generalizations of this

nature would not be supportable. In general, these scales should be set

before a test is begun. In addition, the relationship between performance

on the scales and the utility of thac perforwance should also be eitab-

lished, for example as discussed in the following section of this chapter.

KNOWLEDGE BASE

Logical Consistency:

Redundant Rules: Percentages. The tester will examine the
rule base and determine the percentage of individual rules and
rule sets that are redundant. The tester may be able to
perform a manual walk-through of small rule bases, but use of
multiple software testers is better because the tedious nature
of the task will no doubt result in errors. If an automated
"static tester" were not available for a large rule base, some
sampling procedure would be required.

Subsumed Rules: Percentages. Same rationale as that presented
for "redundant rules."

Conflicting Rules: Number. Our definition was that conflict-
ing rules used the same (or very similar) initial conditions,
but resulted in either different conclusions, or violations in
logic. In contrast to redundant or subsumed rules, which
affect system efficiency, conflicting rules could well result
in bringing the system to a halt unless there is an effective
conflict resolution mechanism; at the least, it results in a
logic error. Unless the initial conditions for conflicting
rules are extremely rare, even I or 2 conflicting rules (or
rule sets) that essentially crash the system may be unaccep-
table even though their percentage in the rule base may be
extremely small.

Circular Rules: Number. Same rationale as for "Conflicting
Rules."

Logical Completeness:

Unreferenced Attribute Values: Number, because the effect Is
on system effcctiveness, not efficiency (-is assuxes i'
the unreferenced attribute values could occur in the operatiorn-
al environment. if they cannot, then they are more like

3-50

"Unnecessary If Conditions," affecting the efficiency with
which the system examines the rule base.)

Illegal Attribute Values: Number. Same rationale as for
"Unreferenced Attribute Values."

Unreachable Conclusion: N . Same rationale as for
"Unreferenced Attribute Values."

Dead Ends: Number. [Note: Effectiveness vs. efficiency con-

cern.]

Functional Completeness:

All Desired Inputs: Number. This again addresses effective-
ness. It should be remembered that this "Functional Complete-
ness" assessment is made by reference to a requirements
statement, or, if that does not exist, by domain experts.
Consequently, each violation on this attribute may need to be
examined because even one or two input omissions may have a
significant impact on the utility of the system. The tester
should consider placing a threshold of "no omissions" on this
attribute.

Application/Conclusion Completely Covered: Number. Same
rationale as for "All Desired Inputs."

- Identified Knowledge Limitations: Yes or No. Most likely, the
expert system either claims to have this capability or it does
not, and the feature either works or it does not.

Predictive Accuracy

Accuracy of Facts: Number. Each "inaccurate fact" needs ex-
amination in order to assess the utility score on this at-
tribute. Accuracy should be determined by reference to an
acknowledged source.

Accuracy of Rules: Number. This can usually be determined
only by an expert or, preferably, by a group of experts. Each
"inaccurate rule" needs to be examined to assess utility score
on this attribute.

Knowledge Representation Acceptability: Yes or No. The imple-
mented knowledge representation scheme is acceptable or not to
other domain experts and knowledge engineers. The tester may
want to get the opinions of several knowledge engineers and
domain experts, if possible, for this assessment. "Other"
knowledge engineers might conclude, on either effectiveness or
efficiency grounds, that (a) an inappropriate representation
scheme was used, or (b) that an appropriate scheme was not
implemented well. Such assessments may be particularly
important when the expert system is in the prototype stage.

3-51

Adequacy of the Source: Yes or No. It is possible for a
source to provide accurate information, but for it to be so
limited as to be inadequate. This attribute will most likely
require the opinions of a domain expert or panel of experts.

Modifiability of Knowledge Base:

Control Over: Yes or No. A software tester can assess
whether accessibility to the knowledge base is controlled
or not. A requirements statement, sponsoring agency,
users, and perhaps security analysts and domain experts
may be needed to assess whether the level of control is
acceptable or not.

Expandability (by human/machine): Yes or No. Again, a
tester can assess whether the knowledge base can be
increased (i.e., expanded), decreased or, in general,
modified by humans and, perhaps most interestingly, by
machir.es. A requirements statement (or the system's
spo-nsoring agency) may provide an assessment of whether
such expandability is desirable. Domain experts working
with Al specialists would probably be required to assess
whether the changes were acceptable. [Note: Accept-
ability, in terms of performance, could be determined by
statistical analysis of test cases where subjects changed
the knowledge base.]

"SERVICE"

Computer System:

Design: Yes or No. Consistent with the definition, the expert
system either runs on the approved computer hardware and
operating system (and utilizes the preferred equipment and fea-
tures) or it doesn't. If it does, then it passes. If it
doesn't, then it fails; the utility score (e.g., between "0"
and "50") would depend on the type of incompatibility problems
found by the software tester. [Note: If the system scores "0"
on "Design," which means that it does not run on the approved
hardware and operating system, then its values for "Set-Up
Time," "Run Time," "Space Requirements," etc. are all tied to
the hardware the system does run on. For an early prototype,
this may be quite acceptable, for "Design" may have a low
weight. However, in the later stages of development, there may
be a noncompensatory threshold rule where a "0" on "Design"
results in an unacceptable score overall.)

Portability: Yts or No for comparable machines. For example,
if the expert system was developed for an IBM AT, then it would
"pass" on portability if it could run on AT-compatibles of
similar power. If it could also run on an IBM PC (or compati-
bles), then it would get a utility score greater than "50,"
depending on whether it ran with n!. its feature.o. If it

3-52

couldn't run well on an AT-compatible, it would receive a score
less than "50." If it couldn't run at all on an AT-compatible
(or a PC), it would get a score of "0." The same logic holds
for mainframes, and for goingg between mainframes and personal
computers. [Note: It is possible that the system is portable
with one type of hardware, but not another. The tester should
refer to any statement of requirements to determine the range
desirzd. The hirdwarp "types" would receive weights to obtain
a total score.)J

Computer Usage:

Set-Up Time: Minutes. The software tester may want to
calculate the average and standard deviation for this at-
tribute. However, that requires that the software tester
perform the set-up a number of times (e.g., 10). The amount of
time required for such repetition, particularly for measuring
other attributes (e.g., "Run Time" or "Ground Truth Perfor-
mance") is probably unacceptable unless the attribute is very
important.

Run Time: Minutes. The tester should record this for all test
cases (to the extent possible) and may use statistical sum-
maries (e.g., mean and standard deviation) in the assessment.

Space Requirements: The amount of RAM and disk space required
to run the system. Standards of acceptable size may be stated
in a requirements document. Otherwise, acceptable sizes might
be determined by the tester based on the total available.

Reliability (Hardware): Percentage of time in a 24-hour day
(or during specified periods) that the computer (i.e., hard-
ware) is operating effectively. [Note: The tester might want
to expand the definition to include software if the expert
system requires distributed databases that reqvire periodic
updating and possible "down time," independent o.' the hard-
ware.]

Capability (Hardware): The computer system's total amount of
RAM and disk space. The importance of this will be related to
how close the expert system comes to using all available space.

Feature Use/Jumping: Number (and type). Each case where
moving from one part of the program to another caused an error
would have to be examined because of its potential effect on
system effectiveness.

Degradation (Graceful?): Number (and type). The concern is on
the effect of ungraceful degradation on effectiveness. In some
operational environments, even one ungraceful degradation would
be unacceptable. This attribute might also be measured on a
"Yes or No" scale on the assumption that the system should
degradate gracefully, regardless of the cause precipitating the
system crash or power outage.

3-53

Handling Input/Output Errors: Number (and type). Same
rationale as for "Degradation (Graceful?)." This could also be
"Yes or No" on the assumption that the system could (or
couldn't) tell the user what to do after an input mistake, but
it's possible that this capability could exist in some modules
and not others.

Sy-,.m Integrit I

Formats: Number (and tvye). Identify all inconsistencies with
input and output formats specified in the requirements document
or other appropriate source.

Data Requirements: Number (and tyte). Identify all incon-
sistencies in the content, quantity, quality, and timeliness of
the system's data requirements and those specified in the
requirements document or other appropriate sources.

Documentation: Acceptable or Unacceptable. All applicable DoD
software documentation standards were met. Standards that were
failed should be identified by the software tester. If DoD
standards aren't appropriate, the software tester should assess
whether the expert system's documentation is, in general,
complete and understood or not. Problem areas need to be
identified. This assessment should be separately performed for
(a) the user's manual, (b) the operator's manual, and (c) the
computer code and its supporting documentation.

Skill Requirements: Yes or No. This may be difficult to
assess. The concern is whether, prior to giving the system to
users, software testers could make an initial assessment of
whether targeted users have the required background skill to
effectively operate the system. After examining the (1)
requirements document and (2) documentation describing the
users' organizational setting, this may be an easy or difficult
assessment. The binary "Yes/No" measurement scale is a
conservative scale. That is, passing the "Skill Requirements"
attribute should be easy to assess or the system fails. For
example, for one Army expert system, this proved to be a
critical issue. The terminology used in the system was the
terminology of the experts and proved beyond the entry level of
the user actually causing the users to interact with the system
in an incorrect manner. This was partially because the skill
level of the users was based on completion of a certain course
which no longer contained many aspects that were in the course
when the experts took the course.

-3-54

PERFORMANCE

Ground Truth:

Speed: Minutes. Consistent with the previous discussions,
software testers should calculate the mean and variance for the
amount of time it takes the (test) users to solve (repre-
sentative) rrohlem scenarios working with the expert system.

Accuracy (d*): Probability that two points, one taken from the
Positive distribution (i.e., the hypothesis is true) and one
taken from the Negative distribution (i.e., the hypothesis is
false) will be in reverse order. That is, the probability that
the belief value of a point xP from the P distribution is lower
than the value of a point x, from the N distribution:

d* - p(xp<xnIxpeP, xeN).

(See Chapter 5 for details.)

Bias (B*): Is calculated by the following formula:

false alarms # false positives

in S. # in Sp

(See Chapter 5 for details.)

USABILITY

Observable:

Extent of Use: Proportion of time the system was used for task
accomplishment. Again, propose calculation of the mean and
variance for this distribution.

Manner of Use: Type and Percentages. The software tester
identifies the different ways in which users employed the
expert system and its features. Then the tester calculates the
percentage of users who used the system in each of the iden-
tified ways.

Features Used: Percentages. Tester calculates the percentage
of users who used each of the system's basic features when
solving the problem scenario.

3-55

Judgmental PerfoMance and the Rest of Usability

Two forms of questionnaires are provided for these attributes in the

Appendix. These questionnaires should be used with a sample of test

subjects and the means and variances calculated for assessing performance

on the attribute.

Using the Hierarchy for Testing

As discussed earlier in this chapter, several steps are necessary to

use the hierarchy of attributes: identify what is being tested, establish

importance weights, define measurement scales for the criteria, convert the

scales to a common unit of utility, test the expert system against all

important criteria, and combine the results into an overall assessment. In

this section, we present some additional suggestions for performing these

steps. Volume 5 contains a detailed example of the method implemented with

TESTERC, the computer program that incorporates the MAU hierarchy.

In many cases, it will be useful to construct hypothetical "benchmark

systems," in addition to the expert system being tested, to use as points

of reference. The tester may want to consider the following "systems":

the test system, which is the expert system being subjected to
testing;

a goal system, which is a hypothetical system that fully
attains every goal on every attribute;

a failing system, which is a hypothetical system that fails on
every attribute;

a marginal system, which is a hypothetical system that, on
balance, would just manage to pass the test, considering its
performance over all attributes.

Introduction of these hypothetical systems enables a tester to apply

the test criteria on a consistent, comparative basis, and to highlight

areas of deficient and superlative performance of the expert system being

tested. Of the hypothetical systems, the marginal one is usually the most

difficult but most important to describe. Any given system under test is

3-56

likely to have some areas where it falls short of goals and others where it

exceeds goals. In addition, some of the goals may be set as ideals that

could not be expected to be met. Ihe w.ggioaL sysretn provides a way for

the tester to interpret performance in a way that recognizes these pos-

sibilities, and to specify in advance a minimal level of acceptable overall

performance. This specification in advance removes some of the subjective-

ness of tLe process by setting an overall level of acceptability before

test results are known. Note that the marginal system will not generally

be unique. Many possible combinations of performance against attributes

may be minimally acceptable. However, when the MAU model is fully speci-

fied, all of these marginal systems should receive about the same overall

evaluation (i.e., weighted utility). Specification of one of these systems

thus aids in the overall evaluation of the actual system being tested.

To convert measurement scales on attributes-such as those suggested

in the section above-to a common utility scale, we suggest the following 0

to 100 point scale. A convenient, consistent scale could assign a 0 to

performance that is a failure against the attribute, and a 50 to perfor-

mance that meets the performance goal fully. This choice is arbitrary in

the sense that these levels of performance could be assigned any numbers,

for example, 0 and 100, 0 and 1000, or 27 and 78. However, the points are

not arbitrary in their meaning; 0 is assigned consistently to the failure

level, and 50 is assigned consistently to the level of full satisfaction.

This assignment provides a basis for consistent interpretation of the

analysis and provides the kind of consistency that reduces bias from the

assessments. The scale also allows value to be attached to performance

that exceeds the goal, by scores greater than 50. A score of 100 is used,

for example, in the questionnaires on subjective attributes to represent a

performance th~t gizatly exceeds the goal.

The scales represent ratio juagments of value in the following manner.

A score of 25 is half-way (in value) between failure and full goal attain-

ment. This provides for convenient and consistent interpretation of

scores. However, it is left to the tester to define the levels of perfor-

mance that repiesent the goal end failure, and these will change from

situation to situation. For example, a 20-minute set-up time may meet the

3-51

goal fully in some cases but may fail in other cases. Another assessment

that the tester must make is whether the performance on any single at-

tribute is so important that the expert system would be regarded as a

complete failure if it failed on that attribute, regardless of Its perfor-

mance on all other attributes. In this case, a threshold of performance

should be applied to this attribute.

These utility values represent value on individual-attributes only,

and a value on one scale is not generally comparable to a score on another

attribute, except by reference to the goals. The weighting procedure

described earlier in this chapter provides a means for comparing across

attributes. The weighting procedure assigns a relative importance to

criteria and attributes in the hierarchy. Such assessments are usually

best made by reference to a requirements document or by asking a respon-

sible individual or organization, such as the sponsoring agency, directly.

In some cases, the tester may have to infer this information from available

information. For example, this process may start by asking the sponsoring

agency to assign relative importance to

0 Structure and Control of the Knowledge Base;

0 Performance of the Inference Engine;

4 "Service" Aspects;

0 Performance of the Expert System; and

* Usability.

(Remember that the question refers to the importance of the range of

performance between failure and the goal level on all attributes beneath

each category.) The tester might then use his information and understand-

ing of the system to assess the relative importance of sub-categories, for

example the relative importance of structure and content of the knowledge

base. For the more important categories. it is best to try to extract as

many of the sub-category tradeoffs from the sponsoring agency or the

requirements document as possible. This process is continued until

relative weights are assessed for all attributes.

3-58

Against this structure, the performance of the expert system is

assessed against each attribute using the appropriate subjective, tech-

nical, or empirical methods discu~se. ii, boo.. •3imilar assessments

may be made judgmentally for any hypothetical systems used.) Next, an

overall assessment is determined by the weighted-averaging technique

described in this chapter; that is, assessments of performance on the

attri22te: are converted to utilities which are multiplied by the ap-

propriate weights and summed (see Equation [3-1]). This score for the

system being tested is then compared with those for the hypothetical

passing and marginal system and checked against any threshold attributes

for an overall assessment. (Remember also that a score of 50 overall is

interpreted as meeting the goal.)

CHAPTER SUMMARY

This chapter provided a detailed overview of five subjective evalua-

tion methods: multiattribute utility assessment (MAUA), cost-benefit

analysis, the dollar-equivalent technique, decision tree analysis, and a

MAUA-based cost-benefit analysis. All five methods are oriented to testing

and evaluating expert systems. With MAUA, utility functions and a

weighted, additive decision rule are typically used to convert the system's

scores on multiple attributes (or evaluation criteria) into a single,

global measure of effectiveness called an overall utility value. With

.o•-beoefi aaaLfsis and tho :c dear-equivalent technique, dollars are used

instead ot utilities to represent tne overall worth of the item. Speci-

fically, cost-benelit analysis uses standard accounting practices, such as

rate of reuurn and time value of money, to create monetary equivalents; the

dollar-equivalent technique develops the equivalents judgmentally when the

standa�- xif,,cfes sr:v-ttret••hed beyond their limit. Decision tree

arilysit provides an eYDpicit, formal method for combining uncertainties

4i tili.!e= 31: dll~ar eqilvait-as) when evaluating a system. The best

item is Cte 0-te with tU1e high*;..x expected utility" or "expected value,"

depending on whether one is using utilities or dollar equivalents.

Finally, the iAIJA-based cost-benefit analysis uses cost-benefit ratios,

where benefit is defined in terms of a utility scale to evaluate items.

Conceptually, it could also be done for dollar equivalents.

3-59

All five subjective evaluation meLhods are applicable throughout the

expert system development process. The appropriateness of a method depends

on the information and decision needs of members of the sponsoring or

development team, available time and resources, and the comfort that par-

ticipants have with the method. Moreover, one should note that "infor-

mation need" and "comfort" are conceptually independent. For example,

decision makers typically feel more comfortable with "hJ'ecttvi_, quantita-

tive" measures of effectiveness (MOEs). However, they also need to

consider more qualitative, subjective MOEs-such as user preferences--when

assessing expert systems. All five subjective evaluation methods are

capable of handling objective and subjective MOEs.

Next, we presented methods for constructing questionnaires to elicit

opinions. This included basic methods for developing question and response

scales, arranging questions in a questionnaire, assessing the reliability

and validity of a questionnaire, and alternative types of questionnaires.

A generic questionnaire for assessing performance and usability charac-

teristics in a test of an expert system was developed following these

guidelines and is presented in the Appendix to the book.

Finally, the last section of the chapter proposed a particular MAU

framework for testing and evaluating expert systems. It described and

defined a hierarchy of attributes, suggested measurement units for the

attributes, and provided guidance on using the hierarchy in testing.

3-60

CHAPTER 4.

MORE ABOUT TECHNICAL rEST AND EVALUATION METHODS

Technical test and evaluation methods assess how well the system was

built. In particular, the focus is on (I) the logical consistency and

adequacy of the knowledge base, (2) the functional completeness and

predictive accuracy of the knowledge base, (3) the adequacy of the in-

ference engine, and (4) the general speed and compatibility of the system's

software and hardware for the organizational setting where it will reside.

Chapter 4 overviews three classes of technical test -nd evaluation

methods, (a) static and dynamic testing methods for assessing the logical

consistency and completeness of the knowledge base and the adequacy of the

inference engine; (b) methods for using domain experts to assess the

functional completeness and predictive accuracy of the knowiedge base; and

(c) conventional software test and verification methods for assessing the

service requirements of the entire system. The three sections in this

chapter are organized around the first three criteria in the MAU hierarchy

presented in Table 2-1. In particular, the first section deals with

testing and evaluating the expert system's knowledge base. The second

section considers the test and evaluation of the inference engine, and the

third section, the expert system's service requirements. Each is now

considered, in turn.

TESTING AND EVALUAT]NG THE KNOWLEDGE BASE

Consistent with the MAU hierarchy in Table 2-1, the knowledge base

sub-branch is divided into two groups of criteria--those focusing on the

adequacy of the knowledge base's structure and those focusing on the

aductuacy ot its ConLent. For t•rucrture, we consider attributes that

address the logical consistency and logical completeness of the knowledge

base. For content, we considei attributes that address the functional

-ompleteness and predictive accuracy of the knowledge base

In general, there are two classes of technical test and evaluation

methods for as;cs~sin~g knowledge base quality. First, static testing

4-1

methods, and, to a lesser extent, dynamic testing methods, can be used to

assess the logical consistency and completeness of the knowledge base.

Second, domain experts working with test cases and employing empirical test

and evaluation concepts and methods can be used to assess the functional

completeness and predictive accuracy of the knowledge base. These two

classes of methods are discussed below within the context of assessing the

adequacy of an expert system's structure and content.

Methods for Evaluating Logical Consistency and Completeness

Some authors (e.g., Rushby, 19d8) have suggested that techniques for

static testing of conventional software are readily extended to expert

system knowledge bases. In both cases, the focus is on '--ecting anomalies

without execution. In expert systems these anomalies relate to the logical

consistency and completeness of a knowledge base. In the last few years, a

number of researchers have developed static testing methods that can be

applied to expert system rule bases (Nguyen et al., 1987; Stachowitz and

Combs, 1987; Franklin et al., 1988; Gilbert, 1989). In this section we

will examine three of these techniques, plus Kang and Bahill's (1990)

dynamic testing approach embodied in their software called "Validator."

Static Testing for Categorical Expert Systems. A categorical system

is one that reasons qualitatively-it does not consider gradations of

belief. Typical of such systems are rule-based expert systems. As noted

in previous chapters, these systems process through chains of if-then rules

to generate conclusions. If one treats if-then rules as logical expres-

sions, then it is possible to check these rule sets for a variety of

logical errors. Examples of such errors (from Adelman and Ulvila, in

press) include those listed below. More extensive taxonomies can be found

in Kirk and Murray (1988), Nazareth (1989), and Rushby (1988).

Redundant Rules. Individual rules or groups of rules that
essentially have the same conditions and conclusions.

Subsumed Rules. When one rule's (or rule group's) meaning is
already expressed in another's that reaches the same conrcluiJc
from similar, but less restrictive, conditions.

6
4-2

* Circular Rules. Rules that lead one back to an initial (or
intermediate) condition(s) instead of a conclusion.

* Unreferenced Attribute Values. Values on a condition that are
not defined; consequently, their occurrence cannot result in a
conclusion.

0 Illegal Attribute Values. Values on a condition that are
outside the acceptable set of values for that condition.

0 Unreachable Conclusion (and Dead Ends). Rules that do not
connect input conditions with output conclusions.

Static testing for the above anomalies could be performed manually

for small, well-structured knowledge bases. For even moderately sized

knowledge bases, however, this approach is precluded by the amount of

effort required and the probability of disagreements among testers.

Consequently, researchers (e.g., Culbert and Savely, 1988; Franklin et al.,

1988; Nguyen et al., 1987; Stachowitz et al., 1988) have begun developing

automated static testers. Although a number of iifferent technical

approaches are being investigated, Gilbert (1989, p. 2) has noted that many

of the automated static testers "... either implicitly or explicitly

consider an expert system's rule base to be a graph or network. In the

graph of a rule base, there are nodes that represent rules and nodes that

represent the hypotheses that appear in the rules' premises and conclu-

sions. There is an arc from a hypothesis to each rule whose premise it

appears in. There is an arc to a hypothesis from each rule that asserts

the hypothesis in its conclusion." Thus, a graph can represent the

knowledge base's logical structure (and flow) and, thereby, help detect the

types of logical consistency and completeness errors defined above.

Although a valuable pictorial display, a graphical representation of

even a moderate-size rule base can be difficult to use for error detection.

Consequently, researchers nave begun using matrices and Boolean algebra to

automate the error detection process. To illustrate this, we use an

example developed by Bellman and Walter (1988) to represent a common source

c'-ror, which is when the same piece of information goes into different

linfs of reasoning. Specifically, Figure 4-1 shows the flow graph for a

fragment of a fictitious knowledge base for diabetes diagnosis.

0
4-3

"PATiENT HAS COMPLAINED OF FATIGUE"

MIDDLE-AGED TESTS SUGAR KETONES
WOMAN N•ORMAL PRESENT PRESENT

II

PRBBYPO ... JU51NATIN 4 0F 0

COFFEE. SALT CALORIES TED
DIET AND EXERCISE AND EXERCISE DIE ONITO

,,1[

Figure 4-1: The Flow Graph for a Fragment of a Fictitious Rule Base for Diabetes Diagnosis

Figure 4-2 presents an incidence matrix for representing this graphic flow.

The rows in an incidence matrix represent inputs; the columns represent

outputs; and the "Is" represent the connection. For example, the information

obtained for age, sex, and weight (i.e., boxes 1, 2, and 3) only goes into box

4, which, in the example, is that the patient is an overweight, middle-aged

woman. Information from boxes 4, 5, and 6 goes into box 9, and so forth.

into:4 9 10 11 12 13 14
out of\
1 -1
2 1
3 1
4 ' 1
5 1
6 1 1

7 1
8 1 1
9 " 1l
!0 * 1 1

Figure 4-2: An Incident Matrix Representing the Flow Graph
for the Fictitious Diabetes Diagnosis Rule Base

0
4-4

The next step is to translate the incidence matrix into Boolean poly-

nomials. This translation process in this example depends on the truth

table shown in Figure 4-3.

A etvonr 4 5 6 9
Pu Le

'41 F F F F
; 42 F F T F
A 43 F T T F
R 44 F T F F

R45 T F F F
R 46 T F T F

R47 T T T F
R48 7 T F T
Asse vol 6 7 10
R661 F F F
R 62 F T F

R 63 T F F
R64 T T T

Assemon 9 10 13

R91 F F F
R92 F r F
A93 T . F F
A 94 T T T

Figure 4-3: A Truth Table Representing a Fragment
of the Fictitious Rule Base for Diabetes Diagnosis

We quote Bellman and Walter (1988, p. 7) to illustrate this process.

We will use "4" to mean "is an overweight, middle-aged woman,"
while 4' mcans "is anything else." Similarly, "5" means
"7hy'�,:ii •(.i L 1t• '1oLLal" while 5' means "thyroid tests abnormal;"
and so on. In that notation,

9 - 4 * 5 * 6'

where we use * for Boolean product (some other notations use
Further,

10- 6 7

13 = 9 * 10.

4-.i

But we can substitute into the expression for 13:

13 - 9 * 10 - (4 * 5 * 6') * (6 * 7) - 4 * 5 {6' * 6) * 7 - 0,

where we show) around the factors which create the 0
product. The conclusion that 13 - 0 means that 13 can never be
set to "T." Another way of stating this is that the rules
assigning 13 the value T [True] can never be utilized.

This mathematically induced result can be seen by examining the truth

table shown in Figure 4-3. Rule 94 (R94) asserts that 9 and 10 must be

true for 13 to be true. Rule 48 asserts that 9 is true if 4 is true, 5 is

true, and 6 is false. However, Rule 64 says that both 6 and 7 must be true

for 10 to be true. Since 6 cannot be true and false at the same time, a

logical flaw in the knowledge base has been discovered.

Approaches similar to the incidence matrix approach can be found in

Sheppard, 1989.

For instance, Nazareth (1989) has shown that if a set of rules

contains a contradiction, then a logical statement of the form

X v X v ZI v ... V Zn

can always be derived using a theorem-proving technique called resolution

refutation. [Note, v, &, - means "or," "and," and "if..then.." respective-

ly.)

To illustrate this approach, begin with the following rule set.

Although not apparent at first look, this rule set contains a contradic-

tion.

RI A &B- C &-D

R2 C & E - -F

R3 -D F & -B

R4 E- A.

4-6

To perform resolution refutation, one first translates logical

expressions into clause form, which is simply a list of disjunctive expres-

sions. A clause form database that is logically equivalent to the above

four rules is the following.

Cl -A V -B V C

C2 -A v -B v -D

C3 -C v -E v -F

C4 DV F

C5 D v -B

C6 -E v A.

The standard technique for making deductions from a clause database

is resolution. Resolution applied to two clauses of the form X v Yl v ...

V Yn and -X V Zl V ... V Zn results in the resolvent clause Y1 V ... V Yn V

Zl V ... V Zn. Resolvent clauses are logical deductions that can be added

to the database, from which more clauses can be deduced. Using resolution,

C2 and C5 resolve to generate the clause

"A v -B v -B.

Since -B appeais twice, the rule set must contain a conflict. (Specif-

ically, given A & B, Ri will conclude -D from which R3 will conclude -B.)

In a similat manner, any possible circular or redundant rules, unreachable

conclusions, or unnecessary if conditions can be discovered using resolu-

tion refutation (see Nazareth, 1988, for a complete discussion).

As these examples illustrate, there are a variety of techniques for

identifying anomalies in a rule base, and simple pairwise comparison of

rules is not always sufficient. Many of these techniques are extendable to

other categorical knowledge representation schemes. For instance, the

logic-based approach can be applied to any knowledge representation scheme

where the knowledge base can be converted into a set of expressions in

symbolic Togic. Examples of such schemes include frames (Hayes, 1981),

script.-, sp:mart c r.ts5 (Nilsson, 1980, ch. 9), etLe

4-7

Several research tools have been developed to check knowledge bases'

(especially rule bases') consistency. CHECK (Nguyen et al., 1987) was

developed for testing knowledge bases built for the Lockheed expert system

shell, LES. EVA (Stachowitz and Combs, 1987), the Expert system Validation

Associate, was developed for ART and could be extended for other shells.

The Expert System Planning Environment, ESPE (Franklin et al., 1988), was

developed at Rensselaer Polytechnic Institute for IBM's Expert System

Development Environment. The Expert System Examiner, ESE (Gilbert, 1989),

was developed by Booz, Allen & Hamilton for ESL (a Lisp-based expert system

language), a pseudo-English, and Nexpert Object. These systems, however,

are research tools that were developed for limited distribution and use.

There are currently no plans to offer these tools as commercial products or

to otherwise make these tools available to testers. Unfortunately, a

tester who wants to automate the static testing of a knowledge base will

probably have to develop his own tool for doing so.

Static Testing for Systems with Reason Maintenance. One approach to

managing uncertainty is to make assumptions, and then to reason from those

assumptions. The capability of reasoning from and retracting assumptions

is variously referred to as truth maintenance, reason maintenance or

assumption-based truth maintenance. We will simply refer to it as assump-

tion-based reasoning.

Assumption-based reasoning is becoming commonplace in expert system

development. Most of the more sophisticated shells now have this capabil-

ity.

Assumption-based reasoning complicates the problem of static testing.

This is because these systems are designed to reason consistently in the

context of contradictory conclusions. Conflicting rules in a normal rule

base may be perfectly consistent in an assumption-based system.

To illustrate, consider the following rule set. Here a, c, d, and f

are propositions, B and E, assumptions.

4-8

RI a -B

R2 B -c

R3 d-.E

R4 E- f

R5 c- -f.

Assume that a and d are entered as facts. Applying these rules, this

rule base quickly concludes c & f--which contradicts R5. However, since

this rule set contains two assumptions, B and E, a contradictory conclusion

does not necessarily imply an inconsistent set of rules. One can always

retract an assumption. In particular, an assumption-based system would

simply deduce that there are two possible states {a,B,c,d,~E,~f) and

(a,-B,~c,d,E,f).

Static testing of knowledge bases with assumptions, therefore, is a

somewhat different problem than simpler knowledge-based systems. Although

some of the same criteria still apply (e.g., unreferenced attribute

values), others do not. In particular, tests for logical consistency are

very different. Curr3ntly, we do not know of any general techniques for

static testing of systems with assumption-based reasoning.

Static Testing for Uncertain Inference Systems. Another approach to

handling uncertainty is to use some type of uncertainty calculus for

quantifying degrees of belief. When an uncertainty calculus is introduced,

however, one quickly discovers that rule sets that would be considered

logically inconsistent in a categorical system are perfectly consistent in

a quantitative systpm. To illustrate this difference, assume that we have

an expert system where the knowledge base corresponds to a set of probabil-

ity statements. Consider the foll:,wing rules:

R1 A&B -C (.7)

R2 C - D (.8)

R3 D - E & F (.65)

R4 A - -F (.75)

4-9

R5 A - F (.25)

R6 F - A (.4).

Each of these rules is interpreted as a conditional probability

statement. For example, the rule C-D (.8) simply asserts P(DjC)-.8.

According to the taxonomy of anomalies presented earlier, this rule set is

full of logical errors. Yet, from the perspective of the probability

calculus, it is completely consistent. Rules R4 and R5, for instance, do

not represent a conflict, but are two equivalent probability statements

(i.e., probability P(~FIA) - I-P(F(A)). Similarly, Rl-R4 demonstrate that

transitivity of inference does not hold when quantitative uncertainty is

introduced. Given B, for instance, we kacw that A implies that C is

probable, C implies that D is probable, and D implies that F is probable.

If probability were a logical property, we would also conclude by tran-

sitivity that A implies that F is probable. In this rule set, however, we

have the opposite assertion, namely that A implies that F is improbable.

[A verbal example might help. Most college students are unemployed

(P(unemployedlstudent) > .5). Most unemployed people have less than a high

school education (P(uneducatedlunemployed) > .5). If we insist on tran-

sitivity, we would also conclude that most college students have less than

a high school education.]

The reason for the difference between categorical and probabilistic

rules is that the probability calculus has its own consistency criteria

that have little to do with "logical" consistency. In the case of the

probability calculus, we know that if a rule set satisfies the following

properties,

P(True) - I

P(-A) - I - P(A)

P(A v B) - P(A) + P(B) if A and B are disjoint

P(BIA) - P(B & A)/P(A),

then it is consistent with the probability calculus, and no conflict can

exist.

4-10

The same is true of any principled approach to uncertainty management

(e.g., fuzzy calculus or belief functions). Each uncertainty calculus

defines its own criteria for consistency-each somewhat unique.

A Dynamic Testing Approach: Validator. Kang and Bahill (1990) have

developed a tool called Validator that uses test cases to assess the

logical consistency and completeness of the knowledge base. The test cases

can be real or imaginary. They can be developed by domain experts, know-

ledge engineers, users-or, preferably, all three-to increase the proba-

bility that most segments of the knowledge base will be exercised. All

that is required is that the test cases embody, at least on the surface,

valid preconditions. The goal is to record rule firings, not to assess

predictive accuracy. The focus is on identifying which rules never fire

and why.

Kang and Bahill (1990, p. 48) discuss the following two classes of

problems that result in rules not firing: "failure due to false premises"

and "failure due to cutoff." Considering the former, if the premise to a

rulc is nt a5atizfied Vy any of the test cases, then the rule will never

fire. This failure can be caused by any of the following three attributes

in our hierarchy: unreferenced attribute values, illegal attribute values,

and utreachable conclusions (and dead ends). If a rule has an unnecessary

if condition, it will still fire if the remaining if conditions are neces-

sary and sufficient.

"Failure due to cutoff" implies that the system always stops before a

certain rule is reached; therefore, the rule never fires. This failure can

be caused by the four logical consistency attributes: redundant rules,

subsumed rules, conflj.cting ru]e.;. and circular rules. It can also be

caused if, as in most backward-chainiing systems, the system stops after

finding a value with complete certainty. To quote Kang and Bahill (p.48),

"Consider this set of rules [where cf is a confidence factor scaled between

0 a'd 100%]:

rule-l: if a - yes then c - 1 cf 100%

0 rule-2: Jf a - no thel, - 2 :.f 100%

4-11

rule-3: if b - yes then c - 3 cf X.

Rule-3 will never succeed. After the inference engine has found a value

with 100% certainty, it won't seek further values. (This example presumes

the user is not allowed to answer 'unknown' when a value for a is

queried.)" (This example also assumes that the rules are accessed in the

order shown.)

As this example illustrates, none of the four logical consistency

errors is the problem. Instead, the problem is either that: (1) both pre-

conditions for a incorrectly reach a conclusion with 100% certainty and,

therefore, rule-3 is never reached; or (2) h represents an unnecessary if

condition and, more generally, rule-3 an unnecessary rule. Deciding which

of these two possibilities is the cause of the problem is up to the domain

expert and knowledge engineer. Validator's task is simply to identify that

rule-3 never fired for any test case.

Validator also identifies rules that fire all the time. As Kang and

Bahill (p. 48) point out, such rules are probably mistakes or are, perhaps,

better represented as facts. "Of course, some control rules always suc-

ceed, and some rules will be designed for rare situations not exercised by

the test cases at hand. Again, this technique is only advisory; the expert

must make the final decision about the rule's correctness."

As this last quote illustrates, Validator leaves a lot of the evalua-

tion of the knowledge base in the hands of the domain expert or derivative-

ly to the tester or developer. Moreover, it does not test the knowledge

base (for categorical systems) for the various types of logical consistency

and completeness errors that the static testing methods described above do.

Instead, it records which rules fired for which test cases, and provides

cumulative statistics, most importantly, identifying which rules never

fired. Finally, it is dependent on the test cases used in the assessment.

If the sample of test cases does not exercise the full range of cases for

which the knowledge base was developed, then many of the rules in the

knowledge base will not fire. Therefore, one might argue that Validator

does not provide as rigorous a test of the knowledge base's logical con-

4-12

sistency and completeness as do static testing methods. However, as we

mentioned before, automated static testers are not currently available;

Validator is.

Summary. Many expert systems, like conventional programs, are cate-

gorical and do not involve assumption-based reasoning. For such systems,

many of the static testing procedures that are used to evaluate programs

can be adapted to evaluating a knowledge base, On the other hand, expert

systems that manage uncertainty, either by making assumptions or usirg an

uncertainty calculus, are not amenable to the same type of testing.

Different uncertainty calculi require different criteria for consistency.

Each system must be evaluated according to its own criteria.

As a practical matter, one may argue that there is little to be

gained from developing and applying generl qoftware tools for static

testing of knowledge bases-there are tr.oo many different criteria. On the

other hand, with the growing interest in testing, one would like to find

future development shells that have embedded appropriate static testing

procedures. If available, such tools could be used for automated static

evaluation. If unavailable, then about all that can currently be done is

some direct manual checking or custom development of specialized tools.

Performing an unaided static analysis of even a small knowledge base

is a tedious task. In fact, we would recommend that two or more testers be

involved in an unaided static analysis of even medium-sized knowledge bases

because the tedious nature of the task without some automated assistance

will no doubt result in errors and omissions. In addition, the use of

sampling procedures would also probably be required to reduce the amount of

work and. in turn, cost. Seetr from this perspective, Validator, even with

its limitations, appears to be a wcrthwhile tool for helping testers.

Methods for Evaluating Functional Comwleteness and Predictive Accuracy

By functional completeness we mean to address the range of domain-

oriented questions, such as whether the knowledge base contains all desired

input conditions and output conclusions, or even "knows" its knowledge

4-13

limitations. Some of these questions can be answered by domain references.

However, the level of domain expertise desired for expert systems is

typically not codified in such references. Indeed, Davis (1989) has argued

that one of the major contributions of expert system technology is that it

has forced the organization and codification of various disciplines.

Consequently, domain experts are usually required to assess the func-

tional completeness of the knowledge base. This is typically done by

having experts perform two activities. First, one has experts examine the

knowledge base (premises, rules, and conclusions) and question the develop-

ers on the various conditions the system can handle or not. Second, one

has experts use test cases-both actual and hypothetical-to exercise the

knowledge base. One should remember, however, that the system's level of

functional completeness depends on its stage of development and, most

importantly, the domain requirements resulting from the requirements

analysis. The DART expert system prototype, for example, considered only

thirteen of forty-two possible activity nodes. This was quite acceptable

in the sponsoring team's opinion because they conceptually placed a low

relative weight on "functional completeness" at this -tage of DART's

development.

The predictive accuracy of the knowledge base pertains to the cor-

rectness by which the facts and rules (or whatever representation scheme)

relates the conditions in the test cases to the system's conclusions. Such

an assessment is essential for expert systems; otherwise, "garbage in" is

literally "garbage out." In particular, we have identified the following

five attributes in Table 2-1 that address the predictive accuracy of the

expert system's knowledge base:

1. Accuracy of Facts: the quality of the unconditional statements
in the knowledge base;

2. Accuracy of Rules (or whatever representation scheme): the
quality of the conditional statements in the knowledge base
reoresenting expert judgment;

3. Knowledge Representation Acceptability: whether or not the
scheme for representing knowledge is acceptable to other domain
experts and knowledge engineers;

4-14

4. Adequacy of Source: quality of the person(s) and/or documenta-
tion used to create the knowledge base;

5. Modifiability of the Knowledge Base: extent to which there is
control over changes to the knowledge base, and whether these
are implemented by (selected) humans and/or the machine itself
(through learning).

Conceptually, knowledge engineering 1 s a measurement problem. For most

of the problem domains for which we develop expert syste,ýs, we do not have

objective, quantitative knowledge (e.g., in the form of ground truth) that

we can, so to speak, take off the shelf and put into a system to solve a

problem. Instead, we have to rely on experts to tell us, on the basis of

their learned knowledge and experience, what information and relationships

between this information are important in solving a problem (or performing

a task) in the domain for which we are building the expert system.

It is not uncommon for experts to not only disagree in their conclu-

sions, but in how they reached them. Moreover, there is considerable

research (e.g., see Ebert and Kruse, 1978; Hoffman et al., 1968; Libby and

S Lewis, 1977) demonstrating that, under controlled settings, the predictive

accuracy of different experts varies considerably. Indeed, the commonplace

phrase, "Get a second opinion," heard in many professional problem domains

for which expert systems are under development, such as medicine, is not

only indicative of this fact, but an illustration of the larger measurement

problem. For if one wants to increase the probability that one has un-

covered some truth and not just the random or systematic error attributable

to the measurement instrument (e.g., domain expert), one should apply the

me-.ýurement principle of sampling over sources of variability (e.g., see

Adelman, 1989; Hammond, 1948).

The measurempnt probiem i; ,a. more complicated in knowledge en-

gineering efforts because there are four additional sources of variability

of the knowledge base: knowledge engineers, knowledge representation

..- •mes, knowledge elicitation methods, and the problem dowiin itself. The

knowledge base'. for many expert systems are, however, developed for a

problem domain using only one domain expert, one knowledge engineer, and

O one elicitation method for a predetermined knowledge representation scheme

' -15

(or shell). The predictive accuracy of expert systems has to be tested for

there is minimal (if any) research demonstrating that the above sources of

variability do not significantly affect the quality of the knowledge base,

and research in areas related to knowledge engineering that suggest they

do.

For example, there is a long line of psychological research in the

field of interviewing, which is analogous in many respects to knowledge

engineering, that has demonstrated significant interviewer effects (e.g.,

see Forsythe and Buchanan, 1989). Research by Hammond et al. (1986; 1987)

with 20 highway engineers using three knowledge elicitation methods to make

aesthetics, safety, and capacity judgments found significant differences in

predictive accuracy for experts, methods, problems and, most importantly,

method-by-problem interactions. Research by Kahneman and Tversky (1984)

clearly demonstrates that the way a problem is "framed" significantly

affects people's decision making process. Research by Dawes and Corrigan

(1974) and Hammond et al. (1975) has demonstrated that the inherent pre-

dictability of problem domains varies significantly. And, although they

failed to vary knowledge engineers, the analysis of structured interviews 0
obtained in a knowledge engineering context by Leddo and Cohen (1987)

suggests that the amount and type of knowledge varies depending on the

expert, task, knowledge representation scheme, and elicitation method;

moreover, they suggest that interactions may exist among all of these

sources of variation.

Given the many different threats to the predictive accuracy of the

knowledge base, multiple experts and empirical evaluation methods should be

used to evaluate the expert system's predictive accuracy. Experts, both

those who participated in development and those acting as independent

evaluators, are typically used to evaluate the predictive accuracy and,

thus, the adequacy of the knowledge base. Expert evaluation typically

proceeds in two ways: through examination of the knowledge base and the

evaluation of test cases.

Examining the Knowledge Base. Expert examination of the knowledge

base typically focuses on whether the system exhibits "correct reasoning."

4-16

The obvious concern is, of course, that the knowledge base not have mis-

takes. However, another concern--and one which Gaschnig er al. (1983)

pointed out is not shared by all developers-is whether their expert

systems reach decisions like human experts do. Many psychologists have

long argued that this concern cannot be answered for one cannot, so to

speak, look inside an expert's head to obtain the "correct reasoning."

Instead, all one can do is build "paramorphic models" (Hoffman, 1960) of

the reasoning process and evaluate their predictive accuracy against test

cases. Indeed, researchers (e.g., Dawes and Corrigan 1974; Einhorn and

Hogarth, 1975 ; Levi, 1989; Stewart et al., 1988) have shown that simple

linear models can often result in prediction as good as those achieved by

experts or the far more complex models found in expert systems.

As Lehner and Adelman (in press) point out in their review of the

literature, this is not a resolved issue. On the one hand, Gaschnig et al.

(p. 255) point out, "... there is an increasing realization that expert-

level performance may require heightened attention to the mechanisms by

which human experts actually solve the problems for which the expert

systems are typically built." In addition, Adelman, Rook, and Lehner

(1985) found that domain experts' judgments of the utility of decision

support system and expert system prototypes were significantly affected by

the match between how they and the system attempted to solve the problem.

On the other hand, the intended users of many expert systems are novices,

not experts. Research by Lehner and Zirk (1987) indicates that novices can

perform extremely well with expert systems as long as they have a good

mental model of how the expert system is using the data to arrive at its

conclubions. What all of this suggests is that, at a minimum, the system's

representation and presentation schemes need to be reviewed by experts and

discussed with intendsd users.

Using Test Cases. We stronv1y advocate the use of test cases and

performance standards to assess the predictive accuracy of the knowledge

jare. That is, we recommend an empirical test and evaluatinn of the

knowledge base. We distinguish here between the empirical test and evalua-

tion of the knowledge base and that of the entire expert system. Remember,

the expert system may be addressing only part of a much larger organiza-

4-17

tional decision. Even if the technical test and evaluation of the know-

ledge base shows that it has good predictive accuracy, the expert system's

contribution still may not ensure better organizational performance.

Moreover, the potential users of expert system technology may not be

experts in the substantive domain. In these cases, one needs both experts

and users to participate in the evaluation. The experts are needed for the

technical test and evaluation of the knowledge base; the users for the

empirical test and evaluation of system performance. If possible and

appropriate, experts should also participate in the empirical evaluation in

order to systematically assess whether system performance is a function of

user type.

There are two standards for empirically assessing the adequacy of an

expert system's knowledge base. The first standard is ground truth; that

is, comparing the system's predictions to the correct answers for the test

cases. The second standard is expert judgment; that is, comparing the

system's predictions to those of domain experts who have and have not

participated in development. Ideally, one would like to be able to use

both standards. Correct answers are desirable because substantial research

(referenced above) has shown that experts do not always make perfect

inferences and, in fact, often disagree with one another in the kinds of

complex domains for which many expert systems are developed. Expert

judgments are desirable because it is often inappropriate to expect better

predictive accuracy from the system than from the expert. It is important

to note, however, that this may not be the case where the system incor-

porates knowledge from a limited, well defined domain--such as a procedure

manual-or where the system represents the expertise of several experts or

is supporting a life and mission-critical mission. Under such conditions,

it may be quite appropriate to expect the expert system to make more

accurate predictions than any given expert.

When using test cases, we want to be able to perform statistical

tests to assess the adequacy of the expert system's predictive accuracy.

That is, we want to perform a t-test or binomial test or other appropriate

statistical test-different tests will be considered in Chapters 5 and

6--to assess whether, on the average, (I) the expert system's predictions

4-18

are significantly different from the correct answers for the test cases, or

(2) different from some predetermined performance level. Ideally, what

we'd like to see is that, on the average, the system's knowledge base

predicts the correct answer; that is, that there is no stacistical, basis

for concluding that the expert system will not, on the average, predict the

correct answer. This goal may, of course, be too ambitious for the expert

system. As O'Keefe and O'Leary (1990) point out, the system may be ac-

ceptable if it performs at a predetermined level, such as being correct 90%

or 95% of the time, or is as accurate as a graduate student if not an

expert, or whatever the predetermined "acceptable performance range" is.

(From a user and organizational perspective, we want performance to be as

good, and preferably better, with than without the expert system.]

Ideally, we want to be able to conclude either that (a) the system's

knowledge base is adequate (according to the predefined "acceptable perfor-

mance range") when it is adequate, or (b) that it is inadequate when it is

inadequate. It is important to note here that statistical tests are based

on the probability calculus and, therefore, their conclusions are poten-

tially fallible. In particular, there are two types of potential errors.

The first type of error is called a Type I error. In the context of

assessing the adequacy of the expert system's predictive accuracy, it is

concluding that the knowledge base is not adequate when, in fact, it is.

O'Keefe et al. (1987) refer to this as the "builder's risk." The second

type of nrror, Type II error, would be concluding that the system's predic-

Uve accuracy is adequate when in fact it is not. O'Keefe et al. refer to

this as the "user's risk." (These types of errors and, more generally,

statistical testing will be considered in Chapters 5 and 6.]

More generally. if ground trut-h measures exist, one should try to

discriminate between "accuracy" arld "bias" in a signal detection sense

(Lehn':r, 1989; Lehner and Ulvila, 1989). Accuracy refers to the degree of

overlap in the distributions of belief values when the hypothesis is true

verrus false. Bias refers to the proportion of false negatives (hypothesis

true, but user or system says false) to false positives (hypothesis false,

but user or system says true). The two different types of bias are concep-

tually identical to Type I and II errors. This more general approach not

,_-19

only considers "builder's risk" and "user's risk," but the expert system's

ability to discriminate among alternative hypotheses. Moreover, it has

considerable implications for helping the test and evaluation team decide

on the number of test cases to use to evaluate the knowledge base's predic-

tive accuracy (we elaborate on this in Chapter 5).

The level of bias to be accepted in an expert system is a critical

decision for intended users and their sponsoring organizations. As the

evaluation of DART (discussed in Chapter 2) demonstrated, different types

of inferential errors differ in their implications, and thus importance, to

decision makers. It is the evaluator's job to make sure that intended

users and sponsors know the amount and proportion of different types of

inferential errors to which the knowledge base is susceptible throughout

development. For these reasons, Chapter 5 discusses the more general

approach in detail.

If the correct answers do not exist or, for whatever reason, are

inappropriate for the test cases, then one must rely on the judgment of an

expert or the consensus judgments of a group of experts. Considerable care

must be given to structuring the experts' activities. In particular, as

with the DART test and evaluation, the evaluation team must ensure that the

experts are "blind" as to whether the system or other experts generated the

conclusions to the test cases. This is typically referred to as a "Turing

test" (e.g, see Rushby, 1988; Yu et al., 1979).

In closing this section, it is important to note that test case con-

struction is an important issue. To quote O'Keefe et al. (1987, p. 83),

"The issue is not the number of test cases, it is the coverage of test

cases-that is, how well they reflect the input domain. The input domain

is the population of permissible input..." [italics theirs]. The required

coverage capabilities is clearly a statement that needs to be a result of

the requirements analysis. For as O'Keefe et al. point out, developers

frequently devote a disproportionate amount of time to attempting to ensure

that the system can handle the truly "expert" cases that may occur very

infrequently. Moreover, these "infrequent" cases often become the test

4-20

cases. This may or may not be appropriate depending on the requirements

for the system, and it can certainly be expensive.

An alternative identified by O'Keefe et al. is to randomly select

test cases using a stratified sampling scheme such that the relative

frequency of the cases is representative of those in the operational

environment or stipulated in the requirements. Additionally, test cases

should be chosen to cover situations where a failure in the system would be

especially serious. It is also important that some of the test cases

simulate the most common operation of the system. As Chapter 5 will show,

a surprising small number of test cases are required to assess whether an

expert system's level of predictive accuracy is sufficiently good to be of

practical value to its users.

Summary. This section of Chapter 4 considered methods for evaluating

the functional completeness and predictive accuracy of the knowledge base.

Functional completeness is typically assessed by having experts (1) examine

the knowledge base and question the developers on the various conditions

the system can handle or not, and (2) use test cases to exercise the

knowledge base. Predictive accuracy is assessed using test cases and

comparing the expert system's performance against two standards: ground

truth and expert judgment. Statistical tests are used to help decide

whether the system's predictive accuracy is acceptable or not. In this

regqrd, we disct,-scd "builder's risk" and "user's risk," and the more

general prob'.'r of •sepsi.ng the types of errorr (or bias) to which the

system is most susceptible. These issues will be considered in substantial

detail in Chapter 5. Finally, we addressed the issue of test case con-

struction in closing this section.

INFERENCE ENOTNE

The inference engine is the portion of the expert system that con-

L.-ns the general problem-solving knowledge. This includes an interpreter

that decides how to apply rules to data and infer conclusions (or the

analogous operations with other knowledge representations) and a schedule

that controls the order in which the rules are applied. In many expert

/4-21

systems, the inference engine is embedded in the development environment,

tool, or shell. However, the vendors of such products provide little or no

information on whether and how their inference engines were tested or

validated.

As a practical matter, it is difficult to test an inference engine,

and most testers do not even try. For noncritical applications of widely

used and established environments, tools, or shells, this practice should

not cause a serious problem. The widespread use of the tool will probably

turn up r-ist of the problems with the inference engine, and the noncritical

nature of the application limits the seriousness of possible problems.

Furthermore, other tests (e.g., those aimed at discovering the correctness

of reasoning or ,f conclusions) can find some of the problems that could be

caused by a faulty inference engine.

The development of benchmarks would aid in the testing of inference

engines. A benchmark is a standard module of coded knowledge with known,

proven-correct results that can be coded on a variety of inference engines.

The correct performance of the inference engine on a comprehensive set of

benchmarks provides strong evidence that the inference engine is correct.

Unfortunately, zsch a set of benchmarks has not yet been developed.

Another -- r-iach to testing inference engines is to code identical

knowledge bases with different inference-engine products (e.g., shells) and

exercise these programs in parallel. If the behavior of all of the systems

is the same, this gives some evidence that the inference engines are free

of problems. However, this evidence is not absolutely conclusive. Fur-

thermore, different results indicate problems in one or more inference

engines, but may not indicate which particular inference engine is faulty.

This procedure is also expensive, and the expense will be hard to justify

for any but the most critical expert systems.

SERVICE REQUIREMENTS

in additioi, iiOi . z.-viating the expert system's knowledge base and

inference engine, traditional software test and verification methods can be

4-22

used to help assess what Rushby (1988, p. 75) has called the expert sys-

tem's "service" versus "competency" requirements. These methods have

considerable applicability (a) prior to programming code for verifying

requirements analysis documentation and functional models of the software,

and (b) once the development process is well underway, during hardware

configuration, system packaging, and system transfer.

Verification testing should be systematically performed for the

service requirements of expert systems, just like any other software

product. Fagan and Miller (as reported in DeMillo et al., 1987) have

identified four phases for software testing. The first phase is manual

analysis in which the requirements specification, the design and implemen-

tation plan, and the program itself are analyzed for problems by experi-

enced software engineers. The second phase is static analysis, which may

be manual or automated, in which requirements and design documents and

software are analyzed, but without code execution. The third phase is

dynamic analysis in which software is executed with a set of test data.

And the fourth phase, which Fagan and Miller consider to be optional, is

attempting to prove the program as being correct. [This last phase assumes

a stable program, not a prototype, and is typically reserved for critical

modules.]

According to classification found in DeMillo et al. (1987), most

testing te-hnlqt-p. seem to focus on static or dynamic analysis; that is,

the f,:cond and "JlýA pu es ! Fav ard Miller's taxonomy. Moreover, the

first and fourth phases can be subsumed by the static and dynamic phases,

respectively, to simplify the presentation. This will make the focus on

testing "service" requirements comparable to the focus on using static and

dynamic tese-.-g metbnds to test characteristics of the knowledge base

conisidered ear.lLer in this chapztr tConsequently, software testing methods

will be overvAewed under these two category headings below.

DeMillo et al. (1987) list five static analysis methods. The first

four methods are manual; the last one Is automated. The manual static

analysis methods are (1) requirements analyses, (2) design analyses, (3)

code irspections and (4) walkthroughs, Requirements analyses typically use

-.2 23

a checklist of evaluation cr'teria, such as the consistency among the

different requirements specifications of the system, their necessity in

achieving system geals, and their implementation feasibility with existing

resources. Design analyses also use a checklist, which may actually be

quite similar to that used in the requirements analysis, but now the focus

is on elements of the software system design, such as the data flow dia-

grams, module interfaces, algorithms, etc. Code inspections and walk-

throughs involve the static analysis of the program by a group of people

but, according to DeMillo et al., the former uses a checklist of common

programming errors as a reference point and the latter uses a set of test

cases for assessing the logic of the program. In addition, as Fairley

(1985) points out, inspections differ from walkthroughs in that a team of

trained inspectors analyze the work products in the former.

Static analyzers, which is what the term "static analysis" typically

connotes, are automated tools that analyze the source code for logic

errors, structural errors, syntactic errors, coding style, interface

consisten:cy, etc. without using test cases to execute the code. As with

automated static analysis of the knowledge base, traditional software

static analyzers are valuable but they do suffer from both practical and

theoretical limitations.

In dynamic testing, test data (called cases) are constructed and used

to execute the software in an effort to uncover programming errors.

Fairley (1985) identifies four types of tests: (1) functional tests, (2)

performance tests, (3) stress tests, and (4) structural tests. Functional

tests are designed to evaluate the adequacy of the software in performing

the functions identified in the requirements specifications. Test data are

selected by specifying typical operating conditions and input values, and

examining whether or not they result in the expected outcomes. Performance

tests are also tied to the requirements (and design) specifications, but

now the focus is on, for example, verifying the response time under various

loads, determining the amount of execution time spent in various parts of

the program, and examining program throughput. Stress tests are, as the

name suggests, designed to overload and, in many cases, break the yvs'ec iL'

an effort to assess its strengths and limitations. Finally, structural

4-24

tests are designed to exercise the logic of the program by traversing

various execution paths. These types of dynamic tests are just as ap-

propriate for assessing the quality of the system's "competency," as its

"service" requirements.

There are a number of different dynamic testing methods. Three

methods are introduced here; discussion of these and other methods can be

found in numerous texts, including DeMillo et al. (1987), Fairley (1985),

Pressman (1982), and Rushby (1988). The three methods are (1) random

testing, (2) input space partitioning, and (3) symbolic testing. Random

testing is a strategy in which a program is tested by randomly selecting a

subset of all possible input values. The distribution of input values can

be either arbitrary or attempt to reflect the distribution actually found

(or expected) in the application environment. In input space partitioning,

test data are selected for evaluating the different subsets of the prog 1m

input domain, such that each partition causes the execution of a different

program control path. The concept is that the input space is partitioned

(or divided) into groups such that the inputs within each group are in some

sense equivalent and, therefore, likely to result in similar behavior.

Again, both random testing and input space partitioning methods can also be

used to test the knowledge base.

In contrast to random testing, input space partitioning, and most

testing methods, symbolic testing uses symbolic inputs (e.g._ symbolic

constants) and outputs (e.g., symbn1i.c formulae and symbolic predicates) to

evaluate program accuracy. The underlying assumption of symbolic testing

is that a program can be conceived of as a finite set of assertion-to-

assertion paths that can be represented symbolically by an execution tree

consisting of nodes associated with the statements being executed and

directed arcs indicating program flUw. The objective is to demonstrate

symbo]ically that eaeh assertion pvath is accurate and, in turn, that the

program is correct. In this regard, symbolic tescing is comparable to the

Theorem-proving methods considered above for testing the knowledge base.

Software verification testing methods are essential if the expert

system is embedded in other software, for having a high-quality expert

" l a a ana I l l 25

system embedded in low-quality, deficient software will be of little value

to the user. However, in many cases, the expert system will not be em-

bedded in other software, but will have to be compatible with the computer

system in the user's operational environment. As Cholawsky (1988, p. 44)

points out, "In general, prototypes ignore both deployment issues (such as

cost-benefit analysis, scaling up to operational size, and handling real-

world data) and transition issues. Important problems, such as linking to

standard databases and porting to standard user hardware, may not be

investigated by the prototype."

"Deployment" and "transition" issues are important ones for testers

to consider. In an effort to assist them, we have identified a host of

such issues and listed them as attributes under the "service requirements"

branch of the KAU hierarchy in Table 2-1. In particular, these attributes

are classified into three groups: those dealing with (1) the computer

system, (2) computer usage, and (3) system integration. The individual

attributes in these three groups are defined, in turn.

Computer System:

Design. The extent to which the expert system runs on
the approved computer hardware and operating system and
utilizes the preferred complement of equipment and
features. In some cases, the original system require-
ments may specify or describe the preferred or required
system. In other cases, the tester may need to survey
available equipment at the intended installation.

Portability. How easily the expert system can be trans-

ferred to other computer systems.

Computer Usage:

Set-Up Time. The amount of time required for the com-
puter operator to locate and load the program (if any)
and the time to activate the program. Set-up time should
be measured in the expected operating environment (i.e.,
how the program will actually be implemented.)

Run Time. The amount of time required to run the program
with a realistic set of input data. This factor refers
only to the time that the computer program takes to run;
the time needed for the programmer and user is included
under dynamic testing factors.

4-26

Space Requirements. The amount of RAM and disk space
required by the program.

Reliability (Hardware). Percentage of time the computer
system could be expected to be operating effectively.

Capability (Hardware). The computer system's total
amount of RAM and disk space.

Effect of Feature Use/Jumping. The extent to which
moving from various parts of the program causes errors.

Degradation. How well the program (a) saves data and
analyses, and (b) permits continuation after an unex-
pected program or system crash or power outage.

Handling Input Errors. The extent to which the program
(a) prohibits a program crash, and (b) tells the user
what to do after an input mistake.

* System Integration:

Formats. The extent to which the program uses input and
output formats that are consistent with the intended use.
This includes any mandated or standard formats that are
specific to the intended user organization.

Data Requirements. The extent to which the program's
data requirements are consistent in content, quantity,
quality, and timeliness with those available to the
intended user organization. The program should also be
able to interact with specified and appropriate databases
and communications systems.

Documentation. The adequacy of material regarding the
•-amcz usc aud maintenance. User's manuals should be

complete and understandable. Copies of computer code and
its supporting documentation should be complete and
understandable, and should allow maintenance by the
government. (All applicable DoD software documentation
standards should be met.)

Skill Requirements. The extent to which the program can
be operated by appropriately skilled individuals. The
appropriate skill iequirement includes grade level (for
military enlisted, military officer, or civilian person-
nel), users' technical background, and training require-
ments. The appropriate level may be specified in re-
quirements or may be determined by reference to the or-
ganizational setting of its intended use and to the
personnel assigned to that setting.

4-27

This section of the chapter has overviewed traditional software test

and verification methods for assessing the adequacy of the expert system's

"service requirements." In particular, we have overviewed five traditional

static testing methods and four dynamic testing methods. These methods are

most applicable when the expert system is embedded in a larger software

system. When it is not embedded in a larger system, we have defined a

number of attributes for assessing the expert system's compatibility with

the computer system in the user's operational environment.

CHAPTER SUMMARY

Chapter 4 addressed technical test and evaluation methods for assess-

ing how well the expert system is built. Its three sections were organized

around the first three criteria in the MAU hierarchy in Table 2-1. In

particular, the first section dealt with testing and evaluating the expert

system's knowledge base. The second section dealt with testing and evalu-

ating the inference engine, and the third section, the expert system's

service requirements. Three classes of technical test and evaluation

mothods were considered: (a) static and dynamic testing methods for

assessing the logical consistency and completeness of the knowledge base

and the adequacy of the inference engine; (b) methods for using domain

experts to assess the functional completeness and predictive accuracy of

the knowledge base; and (c) conventional software test and verification

methods for assessing the service requirements of the entire system.

0
4 28

CHAPTER 5:

MORE ON ASSESSING THE PREDICTIVE ACCURACY
OF AN EXPERT SYSTEM'S KNOWLEDGE BASE

Because of its importance, Chapter 5 extends the discussion in

Chapter 4 on approaches to testing and evaluating the predictive accuracy

of the expert system's knowledge base. For simplicity, we use the terms

"performance of the expert system" or "performance evaluation" to refer to

"assessing the predictive accuracy of the expert system's knowledge base."

1Te reader should not confuse the discussion in this chapter with the

discussion in the next, which is oriented to assessing the overall perfor-

mance of the person and organization using the expert system. However.

both chapters emphasize the use of empirical concepts and methods.

The approach one takes to performance evaluation depends on the

objectives for which the expert system was developed. If the objective of

the system is to capture and encode human expert problem solving, then

performance should be evaluated vis. a vis. similarity to expert judgment.

Alternatively, if the system objective is to maximize accuracy, then

performance evaluation must estimate the extent to which the system

generates correct or accurate outputs.

Below we consider several possible evaluation procedures, each

corresponding to a different development objective. [This chapter contains

highly technical material on a small portion of the hierarchy--performance

against ground truth. This chapter is not essential to the understanding

of the other chapters.]

CASE 1: HYPOTHESV' TESTING WIT;1 BEI.,EF VALUES

Tl-e first case we will consider is presented in more detail (and

conceptually may be more difficult) rhan some ot (he cases presented below-

However, most of th2 concepts we use in the later cases can be convenientlv

introduced here.

Consider the case of an expert system that outputs quantitative

belief values for alternative hypotheses. The objective of the system is

to assess the relative likelihood (plausib!llty, belief, etc.) of each of a

set of hypotheses As we saw in earlier chapter7 many systems fall into

this category.

Possible Performance Measures

As discussed in Lehner (1989) and Lehner aAd Ulvila (in press), an

expert system that evaluates predefined hypotheses is loosely analogous to

a signal detector. A signal detector is any system that functions to

discriminate occurrences from nonoccurrences of a signal. As shown in

Figure 5-1, the signal detection problem is often characterized as one of

receiving a set of sample values (perceived signal strength) from one of

two distributions (signal exists vs. signal does not exist), and on the

basis of this information, deciding from which of the two distributions the

signals were drawn. Usually this decision is based on whether the observed

signal strengths exceed a threshold. The decision threshold is determined

from backgro-ind knowledge of the underlying distributions. The sensitivity 4
of a signal detector is often measured in terms of the normalized dif-

ference between the means of the two distributions (d'). If d' is large

(small), then the error rate of signal/no signal decisions will be small

(large).

d'= • -_ _ _2

d'

Signal Signal
Not Present Present

Perceived
Siqgal Strength

Figure 5-1. lypothetical Distribution of Perceived Sigrul Strength
In Signal [)eltetion Theory

5-2

In an expert system inference network (or other knowledge structure),

each node represents two or more mutually exclusive hypotheses, Many

expert systems generate a belief value (probability, certainty level,

Shaferian belief, etc.) for each hypothesis. Consider a node that dis-

criminates two hypotheses, H, and H2. When H, is true, we would generally

expect the belief value in H1 , bel(Hj), to be higher than when H. is true.

The user's problem is to use the belief values output by the expert system,

along with other available information, to select a hypothesis and act

accordingly. If there is a large (small) difference between the mean

bel(H1) value when H, vs. H2 is true, then the expert system should be

useful (useless) in helping a user to discriminate these two hypotheses.

From a user perspective, an expert system is useful if it helps the

user discriminate instances when different hypotheses are true. One

approach to evaluating a system is to e, Limate the proportion of times the

expert system will generate advice that is useful in discriminating among

alternative hypotheses. In this section we show how this can be done. In

this section and the next section (Cases 1 and 2), we will make several

assumptions. Each assumption will be discussed or relaxed in Case 3.

Assume an expert system that distinguishes between just two hy-

potheses, H and -H. Assume also that the expert system generates belief

values that satisfy bel(H) - l-bel(-H). (Call these assumptions Al and A2,

respectively.) Consider Figure 5-2, which contains two distributions for

densities], P(bel(H)JH) and P(bel(H)J-H). Two thresholds have been set, U

and L. Depending on how a user utilizes an expert system, Figure 5-2 has

at least two different interpretations.

?'bet (H1) 1112) - -/ ----- P(bel(M1)III)

L U bel(H 1)

Figure 5-2:)istributlons of Belief Value, bel(fli) for Ill-true vs. l12-4fai

5-3

First, the expert system may be utilized to partially automate the

inference process. That is, if the expert system outputs very high (low)

belief values, then the user simply acts under the assumption that H (-H)

is true. In this context, U and L can be interpreted as decision thresh-

olds. If bel(H) is greater (less) than U (L), then the user concludes H

(-H). Otherwise the user is uncertain, and proceeds to collect additional

evidence. Of course, complete automation occurs when U - L.

Alternatively, the user may view the expert system as a source of

evidence. That is, the user combines the expert system's output with other

data and knowledge to make his or her own inferences. In this context, an

important question to ask is "How often does the expert system output

strong evidence for the correct conclusion?" One standard approach to

measuring the strength or diagnosticity of an item of evidence is by a

likelihood ratio:

P(bel(H)IH)

P- (bel(H) -H)

If LR is high (e.g., greater than 10), then the report "bel(H)" is strong I
evidence for H vs. -H. If LR is low (e.g., less than .1), then the report

"bel(H)" is strong evidence for -H.

The reason that LR is a standard measure of evidential value is that

most theories of rational induction (i.e., proper degrees of belief)

recommend the use of Bayes' Rule for updating (see Mortimer, 1988). This

rule states that a person's relative degree of belief in H vs. -H, given a

new piece of eviderce, E, should be determined by

P(HIE) P(EIH) P(H)

P(-HIE) P(EI-H) P(-H)

Posterior Odds - LR * Prior Odds.

U and L in Figure 5-2 can be interpreted as thresholds of strong

evidence. That is, if bel(H) is greater (less) than U (L), then the exper.

system has output strong evidence for (against) H. If bel(H) is between U

5
5-4

and L, then that output does not provide strong evidence in either direc-

tion; that is, the user will need to base his or her decision on other

factors or be driven by priors.

Consequently, whether the user chooses to utilize the expert system

to partially automate inference decisions or as a source of eviemnce,

Figure 5-2 provides a way of characterizing user/expert system interac-

tions.

Consider P(bel(H)I-H), the distribution of belief values when H is

false. Given U and L, we can specify three probabilities:

P(bel(H)<Lf-H) - probability of true negative

P(U>bel(H)>LI-H) - probability of uncertain output

P(bel(H)>UI-H) - probability of false positive.

Similarly,

P(bel(H)<LjH) - probability of false negative

P(U>bel(H)>L!H) - probability of uncertain output

P(bel(H)>UIH) - probability of true positive.

Define Pr to be the probability that the expert system will generate

belief val.ues Thet ,rnngly support the wrong conclusion and PU to be the

probability that the expert system will generate belief values that do not

provide strong support for either conclusion. From the above six probabil-

ities, we know that

Pt P(bel(F'l<LjH)*P(H) + P(bel(H)>UI-H)*(l-P(H)) [5-lI

and

PU P(U>bel(H)>LIH)*P(H) + P(U>bel(H)>LI.H)*(I-P(H)) [5-21

5-5

where P(H) is the probability (anticipated relative frequency) of sampling Ifrom the H-true distribution.

Together, PE and P, are two aggregate measures of the usefulness of

2n expert system. If PE is relatively high, say .1, then the expert system

is generating outputs that strongly support the wrong conclusion about 10%

of the time. If PU is relatively high, say .3, then the expert system is

generating useless outputs approximately 30% of the time. From these two

numbers, we know that I-Pu-PE is a measure of the proportion of times the

expert system will strongly support the correct conclusion.

Esti'uatinzEE and P,1

One of the objectives of evaluating an expert system is to assess the

extent to which that expert system can help a user to make correct inferen-

ces. Although different users will set different U and L thresholds, one

can still ask whether it is possible to set thresholds where P5 and Pu are

simultaneously low. If this cannot be done, then the expert system cannot

be very useful in as much as the user must either tolerate a high error

rate or a high rate of outputs in the uncertain region.

To estimate the extent to which P5 and Pu can be simultaneously low,

it is useful to make several simplifying assumptions. They are as follows.

A3) Given each hypc.thesis, the distributions of belief values are

normally distributed.

A4) The distributions of belief values have equal variance.

A5) The U and L thresholds are symmetric. This means that

(bel(H)>UJ-H) - P(bel(H)<LLH).

Since the thresholds are symmetric and the two normal distributions

have equal variance, it follows that PE and PU are now independent of the

relative frequency of sampling from each distribution. Or equivalently

and PU are not affected by the prior probability P(H). Specifically, ue

get

5-6

P, - P(bel(U)>Uj-H) - P(bel(H)<LjH),

and

Pu - P(U>bel(H)>LI-H) - P(U>bel(H)>LIH).

In addition, from these assumptions it follows that

(M1-M2)/s - z(I-PE) + z(I-PE-PU), (5-31

where K,, M2 , and s are the means and standard deviation of the two dis-

tributions, and z(X) is the z-score for X. From this it can be seen that

any procedure for estimating the means and standard deviation of the two

distributions will also provide an estimate of PE and PU.

Consequently, one can specify a straightforward test procedure for

evaluating an expert system that discriminates H and -H. First, identify

two representative sources (H-true vs. H-false) of possible test problems.

Randomly select problems from each source. Run the expert system against

each problem and do a t-test comparison of the results. The t-test

analysis will output an estimate of the mean and standard deviation of each

distribution, an estimate of the difference between the means of the two

distributions, and a standard error of the estimate for this difference.

From these three estimates, PE and PU can be estimated in turn using

Equation (5-31. An example of this will be given shortly.

Using P. and P• to Determine Sample Size

Although the above procedure is straightforward, we still need to

determine the number of test problems required. As it turns out, the PE

and Pu measures can be helpful in making this determination. A standard

result from classical statistics (see Hays, 1972, p. 417-422) will be

useful here. Namely,

2[z(l-a) -z(O)z
N - (Hl-M2)/s

5-7

where N estimates the number of test problems per condition needed to

guarantee that if the difference between the two distributions is at least

(MI-M 2 /s), then there is at least a I-probability of obtaining significance

at the a level in a one-tailed t-test of the null hypothesis of no dif-

ference.

Using this equation, we can determine a minimum sample size for both

groups by specifying the following parameters:

max PE - a maximum acceptable error rate,

max PU - a maximum acceptable rate of ambiguous results,

a - significance level for t-test

(1-fi) - the power of the t-test.

Given these numbers, the minimum sample size for each group is derived as

follows:

2(z(l-a) - z(6)12

[z(l-max P.) + z(l-max Pl-max Pu)I-

If PE + PU < max PE + max Pu, then the probability of obtaining a

statistically significant difference (at the a level) between the two

groups is at least (1-P). As will be illustrated below, using this

equation will often result in a minimum sample size that is very small

(around 5 tests for each hypothesis in a node).

An Example

Assume that we have been given the responsibility of testing an

expert system with the simple inference network shown in Figure 5-3. In

this inference network, there are three evidence items (evidl, evid2, and

evid3), one intermediate hypothesis (ihypl), and one goal hypothesis

(ghypl). Although the analysis does not depend on how belief values are

calculated, we note here that bel(ihypl) is a linear function of bei(evi_1,<

5-8

and bel(evld3), and bel(ghypl) is calculated by performing a relative

maximum entropy update given new values for bel(evidl) and bel(ihypl).

Figure 5-3: Sample Inference Network

Our first task is to specify a minimum sample size. As evaluators we

make the following judgments:

(1) For both false positives and false negatives, an error rate
greater than 5% is unacceptable. If the error rate is larger
than this, users will simply discard the system.

(2) The system should not generate ambiguous results more than 30%
of the time. Beyond this level, using the system will be
perceived as more trouble than it's worth.

(3) Set a - .05--a level commonly used.

(4) Set (1-0) - .90. If, indeed, the system satisfies (1) and (2)
above, then the probability of obtaining one-tail.d t-test
significance at p < .05 is .9 or greater.

From these four judgments, we get

max P. - .30, max P. - .05, a - .05, and (1-8) - .9.

This gives us

5-9

2[z(l-o) -()]
2 2(1.65 - (-1.28))2

N - [z(l-P5) + Z(I-PE-Pu)FZ - [1.65 + .3912 4.12.

So the minimum sample size is approximately four test problems per condi-

tion. Even though this seems like a small sample size, if the difference

between the two distributions is substantial (i.e.. difference between

means sufficient to give PE + Pu 5 .35), then there is a 9(• chance that

this small experiment will generate a t-test result with p < .05. Conse-

quently, it is unlikely that the expert system, if it satisfies these

criteria, will not exhibit at least some difference between the two

distributions.

We decide to be "conservative" and let N - 8.

After running the 16 randomly selected tests, we get the results

shown in Table 5-1. A standard t-test applied to ghypl indicates a

statistically significant difference between the two sample distributions

(p < .00005). Clearly the expert system has achieved some discrimination

between H and -H.

Table 5-1: Sample Test Results

Group Output Belief Values
(fvpl-true - 1) evidl evid2 evid3 ihyvx &hyJ.

0 .4 .56 .61 .59 .39
0 .4 .43 .28 .36 .33
0 .33 .78 .29 .54 .3
0 .26 .23 .33 .28 .28
0 .48 .26 .32 .29 .34
0 .24 .34 .36 .35 .29
0 .29 .54 .78 .66 .38
0 .48 .48 .34 .41 .37
1 .69 .21 .89 .55 .45
1 .8 .76 .56 .66 .5
1 .44 .89 .48 .69 .42
1 .61 .76 .94 .85 .5
1 .81 .55 .86 .71 .52
1 .59 .56 .4 .48 .4
1 .76 .48 .69 .59 .47
1 .68 .49 .23 .36 .4

6
5-10

In addition, we estimate a minimum value for Pu by

z(l-max PE) + z(l-max PE-est[Pu]) - est[Ml-M2)/s].

The observed mean difference is .119, and the estimate of the

standard deviation of the distributions is .044. This gives us

z(.95) + z(.95-est[Pu]) - est[Ml-M2)/s]

1.65 + z(.95-est[Pu]) - .119/.044

z(.95-est(Pul) - 1.05

. 9 5 -est[Pu] - .85

est(Pu] - .1.

This prored-ure can be repeated for alternative levels of max PE, from

which one can see the tradeoff between PE and Pu. This is illustrated in

Table 5-2.

Table 5-2: Tradeoff between PU and PE In Sample Problem

max PE est P,~
.1 -. 02*
.05 .1
.025 .21
.01 .35
.005 .45
.001 .56

* indicates distributions are sufficiently separated that a
single threshold can be set where

P(hel(H)>Lj-H) - P(bel(H)<UIH) :5 max Pý.

Finally, a 90% confidence level for the minimum value of Pu can be

estimated by (a) calculating the 90% confidence level for the minimum mean

difference and (b) repeating the above procedure. In the case of ghypl,

the observed difference was .119 and the standard error of the estimate of

the difference was .022. Consequently, the 90% confidence level for the

5-11

difference is .119 - .022*t(.9, df-14), which is .C9. This gives us an

"upper bound" on Pu of

1.65 + z(.95-est[Pu]) - .09/.044

z(. 9 5-est[Pul) - .40

.95-estIPuj - .66

est[Pu] - .29.

A similar analysis can be performed for all the nodes in the network. The

t-test results for each node in the sample problem are summarized in Table

5-3.

From Table 5-3 we can draw several conclusions. Overall, the expert

system performs well. As far as the goal node (H vs. -H) is concerned, a

user willing to tolerate a 5% error rate should find the expert system

advice useful more than 71% of the time, and most likely around 90% of the

time. These results do support the evaluation hypothesis that Pu: .3.

Table 5-3: Test Results for all Nodes In Sample Problem
(max PE st at .05)

Estimate Estimate (max PE - .05)
Standard Standard 90% C.L.

Node MI-M 2 Deviation Error est Pu est PU

evidl .32 .116 .058 .08 .28
evid2 .135 .197 .099 .78 .90
evid3 .218 .222 .1ll .69 .86
ihypl .176 .147 .073 .63 .82
ghypl .119 .044 .022 .1 .29

Regarding the other nodes in the network, it seems that most of the dis-

crimination is obtained from evidl, and that the other nodes contribute

relatively little to the overall accuracy of the system.

5-12

F e Reconsidefring the AsuMPtionk

In Cases I and 2 several assumptions were made. They were:

Al) The expert system considers only two hypotheses, H and ~H.

A2) The belief values sum to one.

A3) The distributions of belief values are normal.

A4) The distributions of belief values have equal variance.

A5) The thresholds are symmetric.

Each of these assumptions is discussed below. Assumption A3 will be

considered last.

Multiple Hypotheses. If there are just two hypotheses (H and -H),

with belief values that sum to one (A2), then bel(H) completely summarizes

both values. When there are more than two hypothests, this is no longer

true. Given a belief value for one hypothesis, the belief values for the

other hypotheses can still vary. This implies that for each hypothesis,

there is a multivariate distribution of belief values. For instance, if

the expert system discriminates three hypotheses, H1, H2 , and H3 , then the

output can be characterized as a vector of belief values:

b - <l(H:',bel(Hz),he](H•)>.

There are two ways to address the multiple hypothesis case. The

first is to perform a multivariate statistical analysis. The thresholds

then become hyperplanes in a vector space of possible belief values. For

instance, one might set thresholds U, where for each H,, the decision rule

is to select H, if bel(Hi) > Ui. The area defined by bel(Hi) < U, for all i

would then be the uncertain region. Pu is the probability of falling into

the uncertain region, while P. is the probability that for some i, bel(Hi)

',U occurs when Hi is false. Conceivably one could generalize the evalua-

tion procedure described in Case 2 to address this multivariate problem.

We have not explored the details of this generalization.

5-13

An alternative approach is to do a pairwise comparison of hypotheses.

This can proceed as follows. First, define a measure, Bel 1 j, that sum-

marizes the relative belief values of the two hypotheses. For example, we

could set

belij - bel(H1)/[bel(Hj)+bel(Hj)],

or possibly,

bel 1 , - [bel(H1)-bel(Hj)).

Second, determine the minimum sample size required for each pairwise

comparison. Third, select a sample size for each H, that is greater than

the maximum of the minimum sample sizes required for each pair comparison

involving Hi. Finally, collect the test data and compare each pair of

hypothese: s discussed above. This procedure provides a series of tests

that are individually appropriate, but not statistically independent.

Belief Values that do not Sum to One. Many expert syst.ems employ an

uncertainty calculus where belief values do not sum to one or where a range

of possible values is maintained for each hypothesis. For example, in a

Shaferian system of beliefs (Shafer, 1976), bel(H) is often interpreted as

the degree to which the existing evidence supports H, where it often occurs

that bel(H) + bel(-H) < 1.

Conceptually this case is similar to the multiple hypothesis case.

For each hypothesis, there is a multivariate distribution of belief values.

Consequently, the same techniques apply here. In the case of Shaferian

beliefs, for instance, it seems natural that for each pair of hypotheses H,

and Hj, [bel(Hi) - bel(Hj)] effectively summarizes the extent to which the

expert system finds evidence that supports H, vs. Hi.

Unequal Variance. Assumption A4, that the two distributions have

equal variance, is not essential. The main implication of violating this

assumption is that Pu, but not PE, now depends on the v-'litive frecoitecv o!

5-14

sampling from the two distributions. This can be seen from Equations [5-I]

and [5-2].

If assumption A4 is not made, then the procedure described in Case 1

needs to be modified to (1) estimate the variance of each distribution of

belief values separately, and (2) incorporate an estimate of the relative

frequency of sampling from each distribution. As long as the thresholds

are symmetric, PE is unaffected by unequal variances. However, PU will

vary, although its value is bounded by P(U>belij>L1Hj) and P(U>bel 1 j>LIHj),

where Hi and H, are the two hypotheses being compared. A "conservative"

estimate for (2) is one that pushes the value for Pu close to its maximum

value.

Nonsymmetric Thresholds. For testing purposes, the assumption of

symmetric thresholds is reasonable. Suppose a test that assumes symmetry

(with Pg - x) yields an unacceptably high value for Pu. This would imply

that for a decision maker to reduce the value of Pu, the decision maker

must accept either P(false positive) > x or P(false negative) > x or both.

Or equivalently, for a given PU, the minmax value for PE occurs when the

thresholds are symmetric.

However, if the evaluator wishes to assume nonsymmetric thresholds,

then both PU and PE will depend on the relative frequency of sampling from

the two distributions. Consequently, if assumption A5 is violated, then

the procedure in Case 2 must be modified to incorporate a subjective

estimate of the relative frequency of sampling from each distribution.

Note again that Pu is bounded by P(U>belij>LIHj) and P(U>belij>LIHý), while

PE is bounded by P(belj,<LJH,) and P(belij>UIHj). Consequently, a "conserv-

ative" estimate of the relative frequency of sampling from the H-true

distribution is an estimate that pushes Pu + PE towards its maximum value.

Distributions are Normal. Assumption A3 is expedient. Although

normal distributions are prevalent in nature, there is no guarantee that

belief values are always distributed normally. Furthermore, there are

procedures for testing the hypothesis that a collection of sample points

was generated from a normal distribution. When the test data suggest that

5-15

the distrioution is not normal, then one should consider alternative

procedures (see below).

it should be noted, however, that testing an expert system is often

an expensive p'oposition. As a resuit, the sample size tor each distribu-

tion is often small (less than Len). Given a small sample size, it is

unlikely that a sample distribution will lead to rejecting the assumption

of normality, even when tne true distribution is not normal. Wiien the

normality assumption is incorrect, we are unlikely to detect it.

This leaves us with a quandary-routinely use weaker procedures that

make fewer assumptions (viz., nonparametric statistics), or simply assume

normality and accept the occasional errors in evaluation that this assump-

tion will entail. In general, we prefer the latter option.

Some Non-Parametric Procedures

Even if normality is rejected, there are some procedures that can be

used which are analogous to, albeit much weaker than, the parametric

procedures discussed above. Specifically, we define a new measure, d*.

For mutually exclusive hypotheses H, and H2, let P1 and P2 represent the

probability distributions P(bel(Hl)IHl) and P(Gel(H2)IHI), respectively.

We define

d* - P(x<ylx c P1 and y c P2).

The d* statistic is a measure of the extent to which two distribu-

tions can be separated. From the perspective of decision thresholds, d*

has the following properties:

Property 5-1: Given any P1 and P2 distributions, if P(H) - .5,
then the probability of an error is at least d*/2.

Property 5-2: Given any P1 and P2 distributions, if the decision
threshold is symmetric, then the probability of an
error is at least d*/2.

5-16

From the d* statistic, therefore, we can learn something about the poten-

tial accuracy obtainable using a threshold decision rule. If d*/2 is high,

then the expert system cannot be very helpful in discriminating PI from H').

Estimatina d*

The empirical procedure for estimating d* is similar to the para-

metric case. Identify two representative sources (H-true vs. H-false) of

possible test problems. Randomly select an equal number of problems from

each source. Run the expert system against each problem and estimate d* as

follows. Let S1 and S2 be the sample distributions corresponding to Pl and

P2, respectively. If S1 and S2 both contain N observations, then there are

N2 pairs of sample points-one from each sample distribution. Let r be the

number of pair reversals-each pair (x,y) where x SI, y S2 and xy. Let e

be the number of equal pairs (if e is odd, add I to e). We then get

estimate d* - (r + e/2)

N2

This will be a slightly conservative (over) estimate of d*.

To estimate a confidence level for d*, set n to Nd* and then round n

up to an integer value. Then proceed to treat n as though it were i hits

in a series of N Bernoulli trials. Using a binomial distribution, calcu-

late a confidence level for p. this will be a conservative confidence

level for d*.

To illustrate, consider Figure 5-4.

5-17

x
X X

X X X X X X X

0 .1 .2 .3 .4 .5 .6 .7 a8 .9 1.0

Bei (H I>H)

X
X

,~x x x x x

X X X X X X

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

Set(NIM)

Figure 54: Sample Data for C_•dultng d*

Here N -10, r 0, e - 7. This gives us

estimate d* - (10 + 4) - .14.
100

Furthermore, rounding up Nd*, we get n - 2. In the binomial distribution

at p - .45, the probability of getting 2 or less hits is less than .1.

Consequently, at the 90% confidence level, we can assert that d* < .45.

CASE 2: HYPOTHESIS TESTING WITHOUT BELIEF VALUES

Many expert systems are categorical. They simply output a recom-

mended solution, often by testing preconditions for a predefined hy-

pothesis. A standard technique (Green and Swiets, 1966) for evaluating this

type of system is to apply it to a set of test problems and fill in the

following 2x2 matrix.

Hypothesis is
True False

True True FalsJ
Hypothesis Positive Positive
Asserted I . I
to be False True

Negative Negative

5-18

From this matrix one can obviously estimate the probability of each type of

error. Furthermore, one can also estimate the overall "sensitivity" of the

expert system in discriminating true -:s. false instances of the hypothesis.

This is done by assuming that the process underlying the categorical

assessments was a signal detection process with a single decision threshold

with two identical normal distributions. This model was depicted in Figure

5-1. The normalized difference between the means of the two distributions

defines the "sensitivity" of the signal detector. This statistic, called

d', is simply calculated as

d' - [z(l-P(false positive) - z(l-P(true positive)j.

A small value for d' (e.g., d' < 1.0) would indicate that the expert system

is not very sensitive to the hypothesis true vs. false condition, while a

large value (e g., d' > 2.0) suggests that the expert system can effective-

ly distinguish the two states.

This approach can be generalized to a case where the expert system

also may generate an Unknown response. When this occurs, we can add a

third "Unknown" row to the above matrix. Figure 5-2 becomes the underlying

model for this matrix. The procedure for calculating d' remains the same.

Finally, it should be noted that is often used to measure the perfor-

mance of a user/decision aid combination. That is, independent of the

actual outputs generaced by the expert system, one can test to see whether

using the expeit system increases a user's d' score.

Sometimes it is possible to assign utilities or costs to different

types of outcomes. For instance, in medical diagnosis, the cost of a false

positive may be only that of performing a second, more precise test, while

the cost of a missed positive may be serious health consequences. If one

can combine such costs and utilities into a single scale (call this the

Value scale), then the expected value associated with using an expert

system is simply

-
5-19

EV - P(true positive) * Value(true positive)

+ P(true negative) * Value(true negative)

+ P(false positive) * Value(false posirive)

+ P(false negative) * Value(false negative).

Examples of this approach can be found in Levi (1985), Kalagnanam and

Henrion (1988) and Heckerman (1987).

CASE 3: ASSESSING T14E ACCURACY OF QUANTITATIVE PREDICTIONS

Many expert systems generate quantitative predictions as outputs-for

instance, an economic forecasting system that estimates changes in the

Gross National Product, inflation, unemployment, etc. Assuming one has

available a set of test cases where ground truth is known, then a simple

method for "getting a feel" for the accuracy of the system's predictions is

simply to plot a set of predicted and observed scores and to compare this

plot with the ideal prediction line. For example, Figure 5-5 plots the

data shown in Table 5-4. When compared to the ideal line, one can see that

the predictive accuracy of the expert system is very high. Furthermore, by

comparison to the ideal line, one can see that the system tends to overes-

timate the smaller values.

Table 54: Sample Data for Expert System Predicting Quantitative Values

Expert System Predictions Observed Values

120 99
123 127
145 138
165 176

95 112
49 58
96 101

123 110
95 89
86 94

153 167
155 168

78 101
197 188
101 99

5-20

A more formal analysis of predictive vs. observed data can be

achieved using a statistical procedure known as linear regression. Linear

regression provides two useful output5. The first output is the corrpla-

tion between the predicted and observed values. The square of this value

(often labeled R2) is an estimate of the variance in the dependent variable

(here the actual score) accounted for by the independent variable (here the

predicted score). In the case of the data in Table 5-4, R2 - .8994. The

expert system's predictions seem to account for mosc of the observed

variance. The second output is the regression line itself. This line is a

"best fit" summary of the plot. If the regression line deviates from the

ideal line, then this suggests some systematic deviations from the best

prediction--not just random error. For instance, the regression line in

Figure 5-5 has a positive intercept, suggesting again that the expert

system is either overestimating low values or underestimating high ones.

COMPARISON OF EXPERT SYSTEM PREDICTIONS AND OBSERVED VALUES

0 200+ +

S 178+
E I II
R 156+ +
VII
E 133+ +

DI
891+ REGRESSIO

0+ IDEAL LINE +

-4.-----------------------+-------+-------4---

0 67 133 200
PREDICTIONS

Figure 5-5: Plot of Predictions, Outcomes, and Regression Lne for Table 5-4

Finally, if knowledge engineering is still ongoing, one might con-

sider using the regression line as a basis for systematically modifying the

knowledge base. Procedurally this can be achieved by adding to the pre-

5-21

dicted score the difference between the predicted score and the regression

line scores. For example, if the score predicted by the expert system is

120, and the corresponding regression line score is 125, then the knowledge

base should be adjusted so that it reports 125 where it used to report 120.

If the linear regression analysis is based on a lot of data, then this

modification to the knowledge base should increase performance accuracy.

CASE 4: COMPARISON TO EXPERT JUDGMENT

In the previous sections we made two important assumptions: first,

that the performance objective of the expert system was to minimize error;

second, that test cases could be generated where ground truth is not

available. For many expert systems, however, the performance objective is

not only to minimize error, but also to "capture" human expert judgment;

that is, the system is designed to codify expert knowledge. When this is

the case, an important evaluation criterion is the extent to which the

expert system agrees with human expert judgment.

The problem of measuring expert judgmen'/expert system agreement Is

similar to Case 3 where one is assessing the accuracy of quantitative

predictions. Here both the expert and expert system will express quantita-

tive judgments (usually belief values) for each of a set of final and

intermediate hypotheses. For instance, if the expert system evaluates

whether hypothesis H or its negation is true, then one can compare the

expert system's bel(H) values with those of one or more experts.

To illustrate this process, consider Table 5-5. Here the belief

values of an expert system and three experts are summarized for twenty test

cases. As before, one can perform a regression analysis comparing the

system's judgments with each of the experts, or some averaging of the

expert's opinions.

5-22

Table 5-5: Twenty Judgments from Threew perts and Expert Systems

Average of Expert

E Expert 2 Ex.ert 3 Lerts Sstem

25 63 52 46 76

86 82 53 73 77

94 113 93 100 98

163 140 162 155 168

166 129 110 135 123

50 55 69 58 66

52 63 69 61 77

58 12 53 41 84

94 99 84 92 95

163 187 140 163 122

112 45 96 84 90

198 129 1.60 162 144

44 32 53 43 67

13 36 62 37 48

125 92 100 105 100

146 163 120 143 127

72 92 121 95 89

132 69 123 108 121

163 94 126 127 129

153 152 155 153 113

Figure 5-6, for instance, compares the system's belief values with the

average of the three experts' Judgments. As we can see, the regression

line deviates significantly from the ideal line, and there is a lot of

fluctuation around this line. This indicates that there are significant

differences between the experts' and expert system's judgments.

5-23

200+ /
V I / ./

G I
E ~~133-4 +

X/

S I IDEAL
R 67 LINE

J I * /
J I * '

/
U I/ REGRESSION
0
G o+ - LINE

--- - - - - --- - -- - -- - - - - -- - 4--- - - - - - - - -

0 67 133 200
EXPERT SYSTEM OUTPUT

Figure 5-6: Comparison of Expert System and Average Expert Judgment

A more detailed analysis can be performed to examine the intercor-

relation of the expert system's belief values and the various expert

judgments. For instance, the set of intercorrelations for the data in

Table 5-5 is found in Table 5-6. As can be seen, the correlation between

the experts is about the same as the correlation between the expert system

and the experts. This suggests that, although there are some differences

between the expert and expert system judgments, these differences do not

suggest that the expert system's judgm-nts are outside the norm of expert

opinion. In short, the overall evaluation of this system is that it

reflects expert judgment,. (Note, however, that it is still possible that a

more detailed analysis will reveal some consistent differences.)

Table 5-6: Intercorrelation of Columns in Table 5-5

Average of Expert
Expert I Expert 2 Expert 3 Experts System

Expert 1 1.0 .77 ,87 .95 .91
Expert 2 1.0 .78 .91
Expert 3 1.0 .94
Average of Experts 1.0 .90
Expert System 1.0 i

5-24

SOME OTHER APPROACHES

In this chapter some procedures for evaluating the performance of an

expert system were recommended. Before closing this chapter, we wouid like

to mention some other approaches that are found in the literature, and

explain why we do not recommend them.

Probability Scoring Rules. In the judgment and forecasting litera-

ture (as well as in the Bayesian network literature), probability scoring

rules are commonly used to assess the accuracy of probabilistic judgments.

The most commonly used scoring rule, initially proposed by Brier (1950) is

the mean probability score (MPS) which is simply the average squared error

of predictions vs. outcores. For example, suppose that on three consecu-

tive days a weather forecaster predicts a 20%, 60%, and 80% chance of rain.

In fact, it rained only on the third day. Then

MPS - [(.2-0)2 + (.6-0)2 + (.8-1)21/3 - .147.

Our approach differs from the use of probability scoring rules in two

ways. First, we have focused on measures that have a "beha-loral" inter-

pretation. PU and PE tell us somethin& about how a user can use an expert

system. In contrast, the behavioral implications of "MPS - .147" are

unclear. Second, probability scoring rules measure the deviation of

outcomes from the absolute belief values. This presupposes that the belief

values are probability estimates. Furthermore, it may fail to m-asure

discrimination. Note, for instance, that in Table 5-1, bel(ghypl) is

almost always less than .5, even when ghypl is true. (Consequently, the

MPS score for this expert system would be very low, even though the expert

system effectively di-criminates when ghypl is true vs. false.)

Comparison to Linear Models. Another approach (Levi, 1989) involves

the use of a linear regression analysis to identify any linear relation-

ships between the cues (evidence items) and (a) human expert judgments and

(b) the correct diagnosiL (see Levi, 1989, for discussion). :he argument

here is that an expert syscem is useful only if both (a) and (b) reveal a

large nonlinear component, and that expert judgments effectively predict

5,25

the nonlinearity between the cues and correct diagnosis. :f these condi-

tions are not met, then a complex expert system could be replaced by a much

simpler linear model. There is po "added value" in building an expert

system. Although this added value approach clearly has merit, it really

addresses an orthogonal issue. Although it may be possible to conclude

that the expert system has "no added" value vis. a vis. a linear model,

this does not impact performance. Performance iemains the same even if we

end up concluding that the extra cost incurred to build the expert system

was r.ot well spent.

Paired t-Tests. An alternative approach to compare human and expert

system judgments (O'Keefe et al., 1987) is to use a paired t-test analysis.

Here one does a node-by-node comparison t-test comparison to determine if

there is a statistically significant difference between the human expert

and expert system judgments. An even more stringent procedure is to

simultaneously compare all the nodes using Hotellings' T2 analysis.

Although this approach has some merit, it should be noted that the statis-

tical significance results, themselves, are not very useful. This is

lecause, almost certainly, there ir some difference between expert system

and human expert judgment. And given that some difference does exist, one

is almost certain to get a result that indicates a statistically reliable

difference bet,-een the expert system and the human expert.

e
5 -26

CHAPTER 6:

MORE ABOUT EMPIRICAL TEST AND EVALUATION METHODS

In contrast to (a) technical test and evaluation procedures, which focus

on how well the expert system's knowledge base, inference engine, and service

requirements were developed, or (b) subjective test and evaluation procedures,

which focus on how much users liked the expert system, empirical test and

evaluation procedures focus on how well decision makers performed the task

with (versus without) the expert system. Remember, the expert system may be

addressing only part of a larger organizational decision. And in many cases,

the operator, who may be more or less accurate than the expert system's

knowledge base, is using the system to support his/her decision making;

consequently, the operator can override the expert system's recommendation.

Therefore, even if the technical evaluation of the knowledge base shows that

it has high predictive accuracy, the persons working with the expert system,

and the larger organization of which they are a part, may or may not perform

better with the expert system.

This chapter will explicitly consider experiments, quasi-experiments,

and case studies. In particular, experiments are most applicable during

prototyping and at later steps in the process after the expert system has been

developed, packaged, and transferred to an (intermediate) test organization or

the actual target organization. However, the randomization and sample size

requirements of experiments are not always possible in the latter kinds of

environments. Consequently, the second part of the chapter discusses the use

of quasi-experimental and case study designs for objecti.vely assessing the

performance impact of expert systems in more operational versus developmental

environments. As Yin (1984) has pointed out, quasi-experiments are appropri-

ate in those settings where the logic of experimental design can be applied

even though there is less experimenter control. In contrast, case studies are

appropriate in settings where even the minimal experimental control required

for quasi-experiments is not possible. In case study designs, as in all forms

of empirical research, it is the logic of the research design linking the data

collected-and the conclusions drawn from it-to the initial questions driving

the study that determines the validity of the research. In our case, the goal

6-1

is to rule out rival hypotheses for explaining performance differences with

(versus without) the expert system.

The purpose of this chapter is to help one perform better em,_,ical

evaluations. The discussion will be at a general level, for it is not

presumed that this one chapter can even begin to cover all the details found

in experimental design and statistical analysis texts. Rather, the goal is to

sensitize the reader to the different issues that must be considered when

attempting to empirically demonstrate the performance benefits of expert

systems. Such a demonstration typically is (and in our opinion should be)

essential for sponsors to approve the transfer of an expert system into an

operational environment. After all, the bottom line iL typically whether

people can perform their tasks better, faster, and/or more cheaply with (than

without) the expert system. That's what the sponsor wants to know. Yet, as

Sharda et al. (1988) point out, the majority of claims regarding the benefits

of decision support and expert system technology are based on studies that

have not effectively controlled for alternative, plausible hypotheses to

explain improved performance.

Again, from the perspective of the SHOR paradigm, the test and evalua-

tion team's job is to help members of the sponsoring team decide whether the

expert system is an effective option for dealing with hypotheses regarding the

current and/or future problem environment with which the organization will be

dealing. Remember, the initial decision to build the expert system was

ncthing more than a hypothesis that the expert system would improve the

organization's decision making and, in turn, its performance. The test and

evaluation team can use empirical evaluation methods to not only help members

of the sponsoring team assess the adequacy of this hypothesis, but also

identify what corre, •ve actions to take if the expert system is found

lacking. This latter point is extremely important from a prototyping perspec-

tive, for empirical feedback provides important guidance for improving the

system. Correspondingly, the failure to identify whether or not an expert

system actually caused improved performance, as suggested by the reference to

Sharda et al.'s findings above, eliminates the opportunity to improve a

deficient system.

6-2

The remainder of this chapter is divided into two parts. The first part

identifies issues to consider when conducting experiments; the second part

addresses quasi-experiments and case studies. In all cases, we are focusing

on ground truth performance criteria, which are shaded in Figure 6-i. Our

principal concern is on assessing the adequacy of an expert system on the

three ground truth performance criteria: speed, accuracy, and bias. As you

will remember, accuracy and bias also were the principal evaluation criteria

when assessing the predictive accuracy of the knowledge base. Now, however,

we are considering the performance of the person (or organization)/system

unit.

It is important to note that we can also use subjective performance

criteria as dependent measures in an experiment. That is, we could assess how

well or fast experts thought they solved test problems with (versus without)

the expert system. Such assessments are important for two reasons, First,

ground truth performance measures are often difficult to obtain (or simply not

obtained) in operational environments when a test is not being conducted. In

such situations, users' judgments as to the speed and quality of the solutions

generated with (versus without) an expert system often determine whether or

not they will use the system. Second, empirical research (e.g., see Cats-

Baril and Huber, 1987) indicates that ground truth and judgment measures of

performance do not always agree. The test permits one to assess the correla-

tion between ground truth and judgment measures of performance.

EXPERIMENTS

Experiments are, by far, the most common and commonly thought of empiri-

cal evaluation method. They are particularly appropriate when a number of

people would actually use the expert system, for experiments are designed to

help generalize from a test sample to the larger population, which, in our

case, would be system users and their organizations. However, experiments

also can be conducted even if the expert system is being developed for use by

one person. In this case, for example, the prospective user could solve a

nimber of representative problems with and without the expert system in order

to assess whether the user performed better with the system.

6-3

L0 0

w
0 z 0

0. ui

w CL L wc

w 0@ a

0 cr X

LL

0J

Z Zmw c

~~ LLJj

'D 0. 3i- i
w. R(05 6c ~i 1o ~m uO > z C0o w I-

aw LU

zi 2n U,

I- Ual 0E~

z8 §

U-

* 0 H"%0
w CL UMOU ý I-4

One typically thinks of two kinds of experiments. The first kind tests

the expert system against objective benchmarks that often form performance

constraints. When the expert system passes the benchmark, it proceeds

further; when it fails, it undergoes further development or is set aside.

"For example, it is not enough to know that with the aid the user can arrive

at a decision in 30 min. If the organizational user required a decision in 30

min, the aid would be effective. If a decision was needed in 15 min, the aid

would not be effective" (Riedel and Pitz, 1986, pp. 984-985).

First, it should be noted that such performance benchmarks differ from

the more traditional time and efficiency measures used to benchmark computer

systems. Time and efficiency benchmarks typically get developed during

requirements analyses emphasizing a features-based approach. Although such

performance constraints may be necessary in real-time, life-critical activi-

ties, they are unnecessary for many expert system applications. Consequently,

we are not going to consider the timing and efficiency approach further.

Readers interested in it are referred to Press (1989), who benchmarked

different expert systems on the time required to load and execute different

types of knowledge bases, and the amount of disk space required in source and

fast-load formats. Although Press obtained empirical data assessing different

systems, his focus was on the "service requirements" in our evaluation

hierarchy, not our performance criteria.

Second, performance benchmarks, like those illustrated in the quote by

Riedel and Pitz, represent noncompensatory decision rules: that is, perfor-

mance on other evaluation criteria do not compensate for failing the perfor-

mance benchmark. Such a position may, for example, be inconsistent with the

compensatory decision rule guiding the sponsoring team's intuitive decision-

making processes or more formal subjective methods, such as multiattribute

utility technology. After all, it's quite possible that the sponsoring team

might be willing to give up some time for task accomplishment (or some

whatever) in order to gain even a little improvement on other MOEs, such as

decision performance or personnel staffing requirements (or whatever).

The second kind of experiment, and the one that is focused on here, is a

factorial design where (a) one or more factors are systematically varied as

6-5

the independent variable(s), and (b) the dependent variable(s) are quan-

titative, objective measures of system performance. As summarized in Table 6-

1, there are five basic components of most factorial experiments. First,

there are the participants in the experiment. (They are often called subjects

or test subjects even though they are not the subject of the test.)

Table 6-1: Some Summary Comments About Experiments

Two Typical Kinds:

Benchmark Testing
Factorial Designs

Components of Factorial Expenrments:

Participants
Independent Variables
Task
Dependent Variables (and measures)
Experimental Procedures
Statistical Analyses

General Approaches for Controlling Rival Hypotheses:

Include in Experimental Design
Eliminate Their Ability to Affect the Results

Second, there is the experimental condition(s) or independent vari-

able(s) of interest, such as whether the participants perform the task with

(versus without) the expert system. For example, there were two independent

variables in the DART experiment: the "degree of support" and "problem type."

There were two levels on the "degree of support" independent variable. The

"unaided condition" was a control group; it represented the degree of support

the decision maker had without DART. The second level was the "aided"

condition; it represented the support level provided by DART. The "degree of

support" variable need not be limited to two levels. Indeed, it might be

extremely advantageous to evaluate two or more variants of the expert system,

particularly during prototyping when there is substantial uncertainty about

how sophisticated a system users need. And, in the DART experiment, there

were two different problem scenarios because of the development team's concern

6-6

about DART's performance being sensitive to the characteristics of the

scenario. And, as it turned out, it was.

Third, there is the task that the participants are to perform during the

course of the experiment. The level of task difficulty should be either as

representative of the operational environment as possible or matched to the

hypothesized performance capabilities of the expert system. The capabilities

of the expert system depend on its stage of development (e.g., see Gaschnig et

al., 1983; iarcot, 1987).

Fourth, there is the dependent variable(s) (or MOEs) of interest. As we

noted in the introduction to this chapter, we are interested in testing the

expert system on one or more of the "ground truth" or "Judgment" performance

criteria in our evaluation hierarchy. Ground truth measures of accuracy and

bias or, more globally, decision quality, depend on having correct answers.

Judgments of decision quality can be made by either the participants in the

experiment, who may or may not be experts in the substantive field depending

on the proposed users of the system, or other experts. The judgments of

experts is obviously the preferred judgment measure.

Ground truth measures are the preferred quality measures. If experts are

used, attempts must be made to keep them blind as to which experimental

conditions produced the solutions so that this information does not inadver-

tently bias their ratings. Such a context is often referred to as a Turing

test. This was done in the DART experiment; see Chandrasekaran (1983) and Yu

et al. (1979) for other examples.

And, fifth, there are the procedures governing the overall implemen-

tation of the experiment. Substantial care should be directed toward accu-

rately representing the unaided as well as aided condition to ensure a fair

test. If performance is better in the "aided" condition, we want to be able

to say that it is due to the expert system and not some other extraneous

factor. In order to do so, we need to (ideally) try to control for all

"plausible rival hypotheses" (Campbell and Stanley, 1966, p. 36) that might

explain the obtained findings. Toward that goal we introduce the concepts of

reliability and validity. [Note: Statistical analyses-the sixth component

6-7

of experimental designs--will be considered later in this section of Chapter

6.)

Reliability and Validity Broadly Defined

Yin (1984, p. 36) defines reliability as "demonstrating that the opera-

tions of a study-such as the data collection procedures--can be repeated,

with the same results. The key concept is replication. In contrast, "valid"

is defined by Webster's dictionary (1966, p. 1608) as that which is sound

because it is "well grounded on principles or evidence." If an experiment is

valid, its conclusions can be accepted; that is, rival hypotheses have been

controlled for.

An experiment can be reliable, but its conclusions invalid for numerous

reasons that will be considered below. However, an experiment can not result

in valid conclusions if it is unreliable; that is, one can not conclude that

the results are well grounded if the evidence upon which they are based is

undependable. Consequently, the basis for good experimentation is reliable

(i.e., dependable) procedures and measures. Although far from trivial,

reliability is typically possible in experimentation because of high experi-

menter control. The experimenter can pilot-test and subsequently modify the

procedures and measures over and over again until they produce the same

results when applied to the same situation, regardless of who performs the

experiment. In contrast, there exist a number of threats to the validity of

our conclusions regardless of the experiment's reliability.

There are four types of validity that need to be considered when

performing experiments: construct, internal, statistical conclusion, and

external. Each type is now discussed within the context of experiments, and

again in the sections addressing quasi-experimental and case-study designs.

Internal Validity

Yin (1984,.p. 36) has defined internal validity as "establishing a

causal relationship, whereby certain conditions are shown to lead to other

cnnditions, as distinguished from spurious relationships." That is, we wanL

6-6

0 to be able to say that our independent variables, and not some other uncon-

trolled-for factors, caused the observed effects on our dependent variables.

The "uncontrolled-for factors" represent rival hypotheses for explaining the

experiment's results. Moreover, as Cook and Campbell (1979, p. 38) point out,

"Internal validity has nothing to do with the abstract labeling of a presumed

cause or effect; rather, it deals with the relationship between the research

operations irrespective of what they theoretically represent" (italics

theirs). This latter issue is considered under construct validity below.

There are two general approaches to controlling rival hypotheses,

particularly those that might be considered spurious threats to causal

inference. The first approach is to somehow include them in the design. One

way to do so is to include rival hypotheses as other independent variables in

the factorial design. For example, two different problem scenarios were used

in the DART experiment in an effort to minimize the degree to which the

results might be scenario-dependent. Another way to includz rival hypotheses

in the design is through the nature of the design itself. For example, Sharda

et al. (1988) used a longitudinal, factorial design in order to examine

whether time was a plausible hypothesis to explain (initial) performance

decrements with decision support technology, a position consistent with a

learning theory perspective. The point is that the one way to control for

rival hypotheses is to use an experimental design that will explicitly permit

one to test their effect on performance.

Although the first approach for controlling rival hypotheses is power-

ful, it has two limitations. First, it suffers from sample size limitations.

The number of independent variables, the levels on these variables and, more

generally, the experimental design itself need to be considered with care

because of their implications for the number of participants required for

statistical testing purposes. The larger the number of cells in the matrix

representing the factorial design's pairing of levels on the independent

variables, the more participants required to fill the cells and, thus, perform

the experiment.

Second, it presumes that one knows all plausible rival hypotheses.

This, however, is not possible; there may always be alternative hypotheses for

6-9

explaining the data. That is why the philosophy of science focuses on

disconfirmation-not confirmation-of hypotheses. To quote Campbell and

Stanley (1966, p. 34), "In a very fundamental sense, experimental results

never 'confirm' or 'prove' a theory-rather, the successful theory is tested

and escapes being disconfirmed ... An adequate hypothesis is one that has

repeatedly survived such probing-but it may always be displaced by a new

probe."

The second general approach for controlling for plausible rival hypo-

theses is attempting to eliminate any possibility that they can affect the

results. In particular, one wants to control for extraneous factors tha.

significantly impair our ability to make valid causal inferences. This second

approach is exemplified by the concept of randomization. Webster's dictionary

(1966, p. 1204) states that "random applies to that which occurs or is done

without careful choice, aim, plan, etc.)." Arbitrarily assigning test

subjects to the "aided" and "unaided" conditions in the above factorial

design, or arbitrarily determining the order in which DART test subjects

worked the test problems with or without the expert system, illustrates

randomization.

It can not be overstated how important randomization is in experimen-

tation. This point can be illustrated by considering the "threats to internal

validity" that randomization eliminates as plausible rival hypotheses. To

quote Cook and Campbell (1979, p. 56), "When respondents are randomly assigned

to treatment groups, each group is similarly constituted on the average (no

selection, maturation, or selection-maturation problems). Each experiences

the same testing conditions and research instruments (no testing or instrumen-

tation problems). No deliberate selection is made of high and low scores on

any tests except under conditions where respondents are first matched accord-

ing to, say, pretest scores and are then randomly assigned to treatment

conditions (no statistical regression problems). Each group experiences the

same global pattern of history (no history problem). And if there are

treatment-related differences in who drops out of the experiment, this is

interpretable as a consequence of the treatment. Thus, randomization takes

care of many threats to internal validity." (Table 6-2 more formally deiiiie

the threats to internal validity considered above.)

6-10

Table 6-2: Definitions of (Selected) Threats to Internal Validity

Selection: A threat due to the kinds of participants in one group
versus another. [Note: Selection can interact with many
of the other threats listed below.]

Maturation: A threat due to participants gaining experience or in
some manner changing during the course of the research.

Testing- A threat potentially resulting because of the number of
times participants' responses have been measured during
the research.

Instrumentation: A threat due to changing the way the dependent variables are
measured during the research.

Statistical Regression: A threat due to selecting participants for different (and particu-
larly extreme) groups on the basis of pretest measures with less
than perfect reliability.

History: A threat due to an external event taking place during the
course of the research that is not the treatment of inter-
est.

True experiments include randomization. When randomization is not

possible, one can employ quasi-experimental designs. However, quasi-

experimental designs are not as effective as experimental designs in con-

trolling extraneous factors. To quote Cook and Campbell (1979, p. 56), "With

quasi-experimental groups, the situation is quite different. Instead of

relying on randomization to rule out most internal validity threats, the

investigator has to make all the threats explicit and then rule them out one

by one. His task is, therefore, more laborious. It is also less enviable

since his final causal inference will not be as strong as if he had conducted

a randomized experiment. The principal reason for choosing to conduct

randomized experiments over other types of research design is that they make

causal inference easier."

Randomization is the best means for essentially equating the "aided" and
"unaided" conditions prior to beginning the experiment. By doing so, it

significantly limits the number of rival hypotheses that can be used to

explain the obtained data, which in our case would (hopefully) be signifi-

cantly better performance with the expert system. Randomization does not,

however, rule out all threats to internal validity. In particular, Cook and

6-Il

Campbell (1979, pp. 54-55) have identified four threats to internal validity

that are not controlled for by randomization.

The first threat is the "diffusion or imitation of treatments" that may

arise ii members of the experimental and control groups can talk to each other

curing the course of the experiment and in some way obviate the potential

effect of the treatment (e.g., the expert system) because of the information

they communicate. The second threat is the "compensatory equalization of

treatments" that may occur if administrators are reluctant to tolerate the

perceived inequality between the experimental and control groups and, conse-

quently, do not enforce the procedures distinguishing the two. The third

threat is the "compensatory rivalry by respondents receiving less desirable

treatments;" that is, members of the control group act to reduce or reverse

the expected difference. Cook and Campbell note that this threat is particu-

larly likely when intact units are assigned to different conditions or if

members of the control group perceive themselves to be disadvantaged if the

treatment condition is successful, both of which may happen in field tests of

expert systems. The fourth threat is the "resentful demoralization of

respondents receiving less desirable treatments," and represents the converse

or the third threat.

Another threat not controlled by randomization is the unintentional

confounding of the experimental treatment (e.g., the expert system) with some

other factors. With this point in mind, we now turn to consider construct

validity.

Construct Validity

Yin (1984, p. 36) has defined construct validity as "... establishing

good operational measures for the concepts being studied." Good construct

validity means that we are measuring that, and only that, which we want to be

measuring. Of particular concern in empirical tests of expert systems is that

the "with expert system" condition is not confounded by something else. If

confounding exists, then the "something else" represents a rival hypothesis

that could explain our obtained results.

0
6-12

The practice of giving control subjects placebos in medical research is

a good example of trying to control for the -ossible confounding Lctween the

helpful concern of the physician and the chemical effects of the medication.

Similarly, if one considers an expert system as analogous to a new medication,

is the positive effect of a expert system the result of the DSS or the helpful

concern of senior-level management? If it's the lat'er, performance will

deteriorate once the expert system has been declared a success and its users

are no longer the attention of upper-management scrutiny.

Possible confounding is also important when the system has a negative

impact. For example, Markus (1984) used a case study design to show that the

negative resistance to an implemented information system was not a function of

the system's technical quality, but its mismatch with the organization's

interaction patterns. Kaplan and Duchon (1988) used a case study and survey

research approach to demonstrate that the response to an organization-wide

information system was a function of users' perception of -heir jobs, not the

system.

If we have qome idea of what "'ther" variables may be confounded with

our experimental conditions, then we want to either (I) take steps ti elimi-

nate theii potential influence on our evaluation, (2) systematically incorpo-

rate them into our ex• rimental design so that we can directly assess their

effect, or (3) measure them so that we can perform a "post hoc" assessment.

In choosing either of the latter two options, our goal is to measure each of

these rival hypotheses (or constructs) in order to test their predictions with

the collected data and, thereby, assess which hypotheses have been falsifi-d.

[Again, the perspective is on disconfirmation, not on confirmation, although

the latter is how researchers typically report the implications of their

findings.] More generally, the goal is valid causal inference. Since this is

the goal of all empirical test and evaluation methods, not just experiments,

the above points will be considered again when quasi-experimental and case

study designs are addressed later in the chapter.

6-13

Statistical Conclusion Validity

In contrast to internal and construct validity, "[sltatistical conclu-

sion validity is concerned not with sources of systematic bias but with

sources of random error and with the appropriate use of statistics and

statistical tests" (Cook and Campbell, 1979, p. 80). The concern is with (i)

whether tba study is sensitive enough to permit reasonable statements regard-

ing the covariation between independent and dependent variables, and (2) whac

constitutes appropriate tests of these statements.

There are two types of potential errors wIen performing statistical

tests. The first type, called a Type I error (alpha), is the probability of

incorrectly rejecting the null hypothesis, which ih that there is no differ-

ence in the effect of the experimental conditions on the dependckt variables.

For an experiment assessing an expert system's effect on 'erformance, it is

the probability of incorrectly concluding that there is a difference in the

performance levels obtained with (versus without) the expert system when, in

fact, there is no difference. The second type of error, the Type II error

'beta), is the probability of incorrectly accepting the null hypothesis. In

our case, it is the probability of concluding that there is no difference in

the performance levels obtained with (versus without) the expert system when,

in fact, a difference exists. A test's statistical power is the complement of

its Type II error level; that is, I-beta. Statistical power is the probabili-

ty that a statistical test will correctly reject the null hypothesis.

One wants to set up an experiment that appropriately balances the two

types of errors. Such a balance is required because the beta and statistical

power values are constrained by the value set for alpha. As Baroudi and

Orlikowski (1988, pp. 88-89) point out, "The traditional belief is that the

consequences of false positives are more serious than those of false negatives

(Cohen, 1965). Therefore, Type I errors are usually guarded against more

stringently. The distribution of risk between Type I and Type II errors,

however, needs to be appropriate to the situation at hand. Mazen et al.

(1987) present a gzaphic illustration of a case [the ill-fated Challenger

space shutcle] where the risk of incurring a Type II error [saying there wd,

0
6-14

no problem when there was] far outweighed that for Type I [saying there was a

problem when there wasn't]."

"Researchers who wish to conform to the convention of protecting them-

selves more against false positive claims should set alpha to .05 and beta to

.20 (four times as much) (Cohen, 1977). Accepting these recommended values

for alpha and beta results in a .80 value for power (1-beta), meaning that a

statistical test having a power value of 0.80 has an 80% probability of

detecting an effect if it exists. Cohen's prescription of a .80 conventional

power level has become widely accepted as the norm ... " Cohen (1977), as well

as other texts (e.g., Bailey, 1971) provide statistical tables for calculating

statistical pow,- on the basis of the alpha level, sample size, and predicted

effect of the treatment.

Baroudi and Orlikowski (1988), Cohen (1977), Cook and Campbell (1979)

and other researchers (e.g., see also Bailey, 1971) have discussed ways to

increase the statistical power and, more generally, the "statistical con-

clusion validity" of one's experiments. Five will be considered here.

Perhaps the most obvious way is to increase the sample size; that is, the

number of people (or organizational units if that is the appropriate unit of

analysis) participating in the experiment. The larger the sample size, the

more precise the sample estimate of the values on the dependent variable for

each condition, consistent with the Law of Large Numbers.

Second, attempt to increase the reliability of the experiment. For

example, increase the reliability of the measurement instruments. As Cook and

Campbell (1979, p. 43) point out, "... unreliability inflates standard errors

of estimates and these standard errors play a crucial role in inferring

differences between statistics, such as the means of different treatment

groups." Similarly, increase the reliability of the procedures for implement-

ing the different conditions in the experiment. By standardizing how people

receive the treatments, one will decrease the error variance and, thereby,

increase the probability of detecting true differences.

Third, give careful consideration to the research design. As Kraemer

and Thlemann (1987) suggest, include only factors that are necessary to the

6-15

research question, or that have a documented and strong relation to the

response. Including marginally relevant factors decreases statistical power

if not appropriately compensated for by an increase in the sample size. In

addition, try to allocate an equal number of test subjects to each condition.

As Baroudi and Orlikowski (1988, p. 101) point out, "... if the group sizes

are unequal, attenuation of observed effect sizes can occur, which potentially

undermines the statistical power of the analysis, regardless of the total a."
Also, if possible, use repeated measure designs, like the one in the DART

evaluation. By repeatedly measuring the test subjects, one is able to

partition out the error variance due to individual (versus treatment) differ-

ences and, thereby, increase the statistical power of the test.

Fourth, give careful consideration to the research question. As dis-

cussed above, consider which of the two types of error is most important in

your experiment, and proceed according. Also, consider whether your hypothe-

sis is directional or not. It might be, for example, that a sponsor will

consider implementing an expert system only if it can be demonstrated that it

improves performance during its operational test; poorer or even equivalent

levels of performance to those achieved without the system are, for whatever

reason, unimportant. In such a case, it is possible to increase the power of

the test simply by moving from a two-tailed to one-tailed test, for a one-

tailed test with an alpha of .05 has the same power as a two-tailed test with

an alpha of .10, all other things being equal.

Fifth, consider the "effect size" that is of utility to the sponsors.

"Effect size" is the difference in the performance levels achieved by the

different conditions that is of scientific significance or value. The larger

the "effect size" that is of importance (e.g., performance improvements of

100% vs. 10%, or 3 vs 1/3 standard deviations), the smaller the sample size

required to find the effect. Lehner and Ulvila (1989) have shown that a

surprisingly small number of test cases is required to test high utility

performance enhancements for expert system users.

Thus far, we have not indicated what statistical tests should be per-

formed; we have simply focused on the more general issues inherent in consit

ering statistical conclusion validity. Moreover, we are hesitant to go into

6-16

much detail about statistical tests because we know that adequate consider-

ation of them takes substantially more space than is available here. Never-

theless, consistent with the approach taken by O'Keefe et al. (1987), we

briefly overview two classes of statistical tests. [Note: These tesLs are

listed in Table 6-3 for summary purposes, as are the definitions of Type I and

Type II error and the general approaches to increasing statistical power.)

Table 6-3: A Summary of Issues Involved
in the Discussion of Statistical Conclusion Validity

Definitions:

Type I Error: The probability of incorrectly rejecting the null hypothesis
that there is no difference between test conditions.

Type I1 Error: The probability of incorrectly accepting the null hypothesis
that there is no difference between test conditions.

Statistical Power: The probability of correctly rejecting the null hypothesis that

there is no difference between test conditions.

General Approaches to Increasing Statistical Power:

Increase sample size
Increase the reliability of the experiment
Give careful consideration to the research design
Give careful consideration to the research question

Illustrative Types of Statistical Tests:

For one independent variable with two levels and one dependent variable:

Two-sample t-test

For more than two levels on one independent variable or two (or more)
independent variables, but one dependent variable:

Analysis of Variance (ANOVA) with Planned or
"post hoc" statistical tests

For one independent variable with two levels and two dependent vari-
ables:

Hotelling's one-sample VI test

For more than two levels on one independent variable or two (or more)
independent variables, but two dependent variables:

Multivariate Analysis of Variance with ANOVAs
and planned or "post hoc" statistical tests

6-17

For the first class of tests, assume that one has only one factor-the

degree of aiding. Moreover, assume that one has only two levels on this

factor, whether the participant worked the problem with or without the expert

system, and one dependent variable (i.e., performance MOE). We can use a

paired (or two-sample) t-test to assess whether the difference in the average

performance levels obtained in the two conditions is significantly different.

If we have more than two levels on this factor, or more than one factor, then

we should use an Analysis of Variance (ANOVA) test instead of multiple t-tests

in order to appropriately control for finding differences between our condi-

tions by chance. The ANOVA should be accompanied by either "planned" or "post

hoc" statistical tests of the (average) perf.ormance levels obtained in the

different conditions depending on whether the observed differences were

hypothesized or not prior to conducting the experiment.

There are, of course, maliy situations where there are multiple, not just

one, dependent variables of interest. The second class of statistical tests

deals with this case. Again, consider the case where we have only one factor,

degree of support, and two levels on it. To quote O'Keefe et al. (1987, p.

87), "While a paired t-test is appropriate when systems produce a single final

result, simultaneously applying a paired t-test to a number of final results

is inappropriate since we can expect the final results to be correlated ...

In such cases, Hotelling's one-sample V2 test should be used." In the case

where there are more than two levels on the factor or multiple factors, then

one should use a multivariate analysis of variance (MANOVA). If the MANOVA

shows a significant difference between experimental conditions, then separate

ANOVAS and planned and post hoc comparison tests can be performed to statisti-

cally examine the data.

External Validity

In addition to internal validity, construct validity, and statistical

conclusion validity, one also needs to consider external validity. To quote

Campbell and Stanley (1966, p. 5), "External validity asks the question of

generalizability: To what populations, settings, treatment variables, and

measurement variables can this effect be generalized?" [italics theirs).

Within the context of most expert system tests and evaluations, external

6-18

validity deals with the extent to which the results obtained in an experiment

conducted in a simulated (laboratory) setting will generalize to operational

environments.

As pointed out in Chapter 1, one of the most fundamental dimensions over

which test settings can vary is their degree of fidelity to the target

setting. The simulated environment, the simulated decision-making organi-

zation, and even the simulated user can range between being only superficially

accurate to being accurate in great detail. By itself, high fidelity is

desirable in any evaluation setting, but it is expensive. Besides increased

dollar costs and evaluation time, fidelity introduces an additional cost in

terms of loss of experimenter control as one moves from the laboratory to the

operational environment. This means that it may be increasingly difficult to

obtain the desired measures in the latter context. Moreover, even with well

implemented quasi-experimental and case study designs, these measures will be

increasingly susceptible to influences that are extraneous to the causal

relations of concern, thereby representing threats to internal and construct

validity. Consequently, a tradeoff is established between fidelity and costs

such that, depending on the objective of the test and evaluation, it may be

desirable to simulate all parts of the target setting prior to moving the

assessment into the operational environment.

As mentioned earlier, experimentation during later software and hardware

development steps is a natural part of the prototyping process. To date, this

experimentation typically focuses on the Expert System/User interface (e.g.,

see Gould and Lewis, 1985) via "human factors evaluations" (Riedel and Pitz,

1986, p.990). While essential to developing a well-liked, usable system, such

experiments typically have low-fidelity User-Expert System/Decision Making

Organization (DMO) and DMO/Environment interfaces. Many expert systems are,

however, used in organizations for the purposes of improving organizational

decision making and. in turn, organizational performance. Consequently,

increasing the fidelity of the organizational and environment interfaces is

essential in generalizing the performance results obtained in the laboratory

to a real-world setting.

6-19

In order to increase the fidelity of the User-Expert System/DMO and

DMO/Environment interfaces, identify the organizational structures, processes,

and communication patterns (both formal and informal) impinging on performing

the task. This includes time pressures, interruptions, the reward structure,

and even whether the decision maker or a subordinate will operate the expert

systemr If a task is really performed by a group and not the organizationally

identified, individual decision maker, then, ideally, the group needs to be

represented in the laboratory. For some tasks, such as distributed ones, it

may be possible to simulate the effects of a group by the information present-

ed to the participating decision maker. For other group decision-making

tasks, it may be possible to train members of the research staff to play

certain roles. However, accurate representation of the groups for some tasks

may require the presence of trained personnel performing their parts of the

task in order to assess the value of the expert system. Such a situation will

affect the physical size and structure of the laboratory setting. In addi-

tion, audio- and video-taping capabilities should be used as a data collection

mechanism if the interactions among group zembers are hypothesized to play a

significant role in the successful performance of the group.

In addition, try to make the interaction with the expert system as

representative as possible of that which would occur in the actual environ-

ment. This includes the training in using the expert system. Insufficient

training will result in the experiment being an unreliable measure of the

potential value of the expert system; therefore, if an error is made, err on

the side of too much versus too little training. If possible, use objective

measures to demonstrate that the user has been trained to the desired level of

proficiency on the system prior to beginning the experimental session. Also,

make sure that training includes working representative problems. Not only

will users be better trained to participate in the experiment, they will be

better able to subjectively evaluate the expert system's strengths and

weaknesses.

From both an experimentation and prototyping perspective, the fidelity

of both the organization and environment interfaces should be improved

systematically, as the user interface is typically done now, in order to

provide maximum experimenter control for assessing the characteristics ot each

6-20

that have the greatest impact on expert system performance. Such a perspec-

tive is, however, idealistic, given the time and cost constraints on most

expert system development efforts. A more practical approach for later in the

development cycle is to develop a gaming simulation that is as representative

as possible of the User-Expert System/Organization and Organiza-

tion/Environment interfaces. (Note: As a result of the requirements analy-

sis, essential features of both interfaces should be kept in mind throughout

the early steps of the development process.] In particular, a two-phased

experimentation approach could be implemented.

The first phase could be a relatively straightforward experiment testing

whether or not the expert system significantly improved objective process and

performance MOEs. A positive finding in as representative a "simulated"

setting as possible, particularly over variations in representative problem

scenarios and personnel, would provide the empirical results necessary for

attempting to validate the expert system in its target setting. A negative

finding would lead to the second phase, which would be experimentation

oriented to ascertaining (a) why performance was not significantly better with

the expert system, if that could not be assessed during the Phase I experi-

ment, and (b) whether modifications to the system result in improv'ed perfor-

mance. The second phase might also include modifications to aspects of the

organization that are hypothesized to affect performance with the expert

system. More generally, the goal of the second phase of experimental testing

is to better assess the factors that are affecting expert system performance

and attempt to rectify them in as representative an experimental setting as

possible before transferring the system into its operational (or operational

test) environment.

Field Experiments

Once the expert system has demonstrated superior performance in a

representative, laboratory setting, it is ready for an experiment in the

actual target setting. Although more difficult to implement, "field ex-

periments" also need to control for all threats to validity. For example,

regarding internal validity, organizational units (e.g., divisions/sections in

a large company or governmental agency) would be randomly assigned to the

6-21

"with expert system" and "without expert system" conditions, and their

performance measured after it has stabilized. The unit of analysis is the

performance of the organizational unit; consequently, a large enough sample of

units would be required for performing statistical tests.

Regarding ,;nstruct validity, attention must be directed toward tightly

measuring the process and performance variables of interest and controlling

other variables that might be confounded with them. If we have some ideas of

what these variables (or rival hypotheses) may be, we want to take steps to

either eliminate their potential impact on the study, systematically incor-

porate them into our experimental design, or measure them so that we can

perform a "post hoc" assessment. If possible, a "placebo" condition would be

included too.

Regarding statistical conclusion validity, we want to have as high a

level of statistical power as possible. This statement implies serious

consideration of our research design, the questions we are addressing (includ-

ing effect size), and the relative importance of Type I and Type II errors.

The issue of external validity does not have to be addressed if, and only if,

the field test includes all aspects of the population to which we want to

generalize our results.

CASE STUDIES AND QUASI-EXPERIMENTS

The sample size and randomization requirements of true experiments are

not possible in many organizations. Case studies and quasi-experiments should

be used in such situations. To quote Campbell and Stanley (1966, p. 34),

"There are many social settings in which the research person can introduce

something like experimental design into his scheduling of data collection

procedures (e.g., the when and to whom of measurement), even though he lacks

the full control over the scheduling of experimental stimuli (the when and to

whom of exposure and the ability to randomize exposures) which make a true

experiment possible. Collectively, such situations can be regarded as quasi-

experimental designs."

6
6-22

All four types of validity need to be considered for these designs just

as for experiments. The reduced control of not being able to perform field

experiments makes empirical evaluations in the actual setting more difficult,

but it does not eliminate our ability to perform them consistent with the

tenets of the scientific method. "[T]he core of the scientific method is not

experimentation per se, but rather the strategy connoted by the phrase

[evaluating] 'plausible rival hypotheses'" (Campbell, 1984, p. 7).

There are different types of quasi-experimental designs. Campbell and

Stanley (1966) identify ten types, not counting variations of these themes.

The three quasi-experimental designs considered below are: (a) time-series

designs, where the organizational unit is measured for a period of time before

and after the treatment (e.g., expert system implementation); (b) multiple

time-series designs using a control group; and (c) nonequivalent control group

designs that obtain pretest and posttest measures at only one time for a

nonrandomized sample of treatment and control groups.

Quasi-experimental designs represent a substantial advance over the

"pre-experimental designs" (Campbell and Stanley, 1966) found in many "field

studies" (Sharda et al., 1988). We will first overview the three pre-experi-

mental designs and then discuss how case study and quasi-experimental designs

represent improvements over them.

Pre-Experimental Designs

Campbell and Stanley (1966, p. 6) called the first pre-experimental

design "the one-shot case study." Cook and Campbell (1979, p. 96) later

renamed this "the one-group posttest-only study" in order that it not be

confused with appropriately conducted case study designs. In this approach,

one organizational unit is given the treatment (e.g., the expert system) and

performance is subsequently measured. There is no pretesting and there is no

control group; instead, a "... single instance is implicitly compared with

other events casually observed and remembered. The inferences are based upon

general expectations of what the [performance] data would have been had the

[treatment] not occurred, etc." (p. 6).

6-23

The one-group posttest-only study violates all four types of validity.

First, there is no control for (or even consideration of) internal validity

threats due to how participants are selected or what may have also occurred

during the treatment stage, either through historical events or other changes

to the participants or their organizational context. Second, nothing is

measured so it is impossible to determine what extraneous factors may have

been confounded with the treatment, or to assess their effects. Third, there

is no explicit measurement of performance variables or comparison with another

group; consequently it is impossible to assess statistical conclusion validi-

ty. and, fourth, it provides no justified basis for predicting the effect of

the treatment on another group of participants.

The second pre-experimental design is the one-group pretest-posttest

design, where implementation of the expert system represents the treatment.

The problem with this design is that it does not control for the effect of

other plausible hypotheses that could have improved performance between the

pretest and the posttest. Three types of plausible rival hypotheses im-

mediately come to mind. First, there may have been "other events" that

occurred between the two tests that can explain the results-that is, history.

Second, if the selected group represented extreme performers (e.g., the very

best or very worst), then one would expect pretest-posttest differences to be

affected by statistical regression to the mean. And, third, the design does

not rule out other effects that are confounded with the treatment, such as the
"special attention" that goes with the implementation of the expert system.

The third pre-experimental design is the static group design, also

called the "posttest-only design with nonequivalent groups" (Cook and Camp-

bell, 1979, p. 98), where the subsequent performance of the group receiving

the treatment is compared with that of a group without the treatment. Since

there is no pretest or randomization with this design, there is no "... formal

means of certifying that the groups would have been equivalent had it not been

for the treatment [e.g., the expert system]" (Campbell and Stanley, 1966, p.

12). Or, to be more blunt, "The plausibility of selection differences in

research with nonequivalent groups usually renders the design uninterpretable"

(Cook and Campbell, 1979, p. 98). The last two pre-experimental designs arc

somewhat insidious in the sense that, on the surface, they represent "pretest.

6-24

. posttest control group" and "posttest-only control group" designs, respective-

ly, which are true experimental designs because subjects are randomly assigned

to at least two conditions-the treatment and the control groups.

Explicit case study and quasi-experimental designs will now be con-

sidered in relation to the three pre-experimental designs considered above.

In particular, case study designs will be juxtaposed to the one-group post-

test-only design; time-series designs will be juxtaposed to the one-group

pretest-posttest design; and nonequivalent control group designs will be

juxtaposed to the posttest-only design with nonequivalent control groups. The

reader should keep in mind that we are sampling only from a wide variety of

quasi-experimental designs. Although they are considered together here, case

study and quasi-experimental designs represent different evaluation approach-

es.

Appropriate Case Studies

Yin (1984, p. 23) has defined a case study as "an empirical inquiry that

investigates a contemporary phenomenon within its real-life context; when the

boundaries between phenomenon and context are not clearly evident; and which

multiple sources of evidence are used." This definition nicely fits the

evaluation of an expert system or, more broadly, any form of information

technology (or intervention) in an operational environment. As Lee (1989, p.

33) points out, "There is a strong case-study tradition in the academic field

of management information systems ... [Our concern is] to clarify the metbod-

ological basis upon which to conduct case studies."

We first consider construct validity, which is the attempt to ensure

that one is measuring the concept that one wants to measure. To quote Yin

(1984, P. 37), "To meet the test of construct validity, an investigator must

be sure to cover two steps: (1) select the specific types of changes that are

to be studied (in relation to the original objectives of the study) and (2)

demonstrate that the selected measures of these changes do indeed reflect the

specific types of change that have been selected" [italics ours]. The reason

for the italics is that the lack of experimenter control in case study

research makes it much more difficult than in an experiment to minimize the

6-25

potential confounding of the treatment of interest (e.g., the expert system)

with other variables (e.g., special attention).

Moreover, lack of control makes it more difficult to be sure one is

measuring that which one wants to measure. For example, in a laboratory

experiment it might be quite easy to measure decision quality because one has

a ground-truth solution to the problem scenario. In contrast, in an opera-

tional setting, it might be quite difficult to define decision quality because

it might be in the eye of the beholder. In such settings it is necessary to

have multiple experts, preferably ones who are not part of the organization,

rate decision quality and then use either a consensus position or an average

rating to resolve any differences of opinion. In an effort to make the

experts blind to the solution generated by the expert system, one should

attempt to state the problem generally and to embed the actual solution in a

range of hypothetical solutions.

The principal approach to solving the threat to construct validity in

case study research is two-fold. First, the constructs need to be reliably

measured. Again, the essence of reliability is replication-that is, the

position that if another researcher did the same study a second time, one

would obtain the same results. To quote Yin (1984, p. 40), "Note that the

emphasis is on doing the same case over again, not on 'replicating' the

results by doing another case study ... One prerequisite for allowing this

other investigator to repeat an earlier case study is the need to document the

procedures followed in the earlier case. Without such documentation, even you

could not try to repeat your own work (which is another way of dealing with

reliability) ... The general way of approaching the reliability problem is to

make as many steps as possible as operational as possible, and to conduct

research as if someone were always looking over your shoulder" [italics his].

Second, case study research should use multiple sources of evidence to

measure the independent variable constructs. More generally, there should be

a high correlation among different pieces of evidence all supposedly measuring

the same construct. Conversely, there should be no correlation among pieces

of evidence measuring different independent variable constructs. This is the

concept of convergent and discriminant validation introduced by Campbell and

6-26

Fiske (1959). Quite simply, Le idea is that measures of the same thing

should be highly related; mearures of different things should not be. For

example, if the implementation of an expert system were preceded by effective

training, one would expect chat to be reflected in a number of ways, such as

by (1) behavioral measures of proficiency in using the expert system prior to

testing (or during implementation), and (2) subjective responses to interview

questions. That is, different measures of "training proficiency" would all

converge on the same result I reover, there should be no confounding wit•

other independent variable constructs. l'or example, there should be no

systematic relation between meastres of training proficiency and organization-

al size or management attention if there is high construct validity.

It is impoxtant to emphasize that causal inference has not yet been

considered; construct validity addresses only whether one is actually measur-

ing the variables une wants to measure, not whether there are causal relations

between these variables. In order to do the latter, we need to consider

statistical conclusion validity and internal validity. The former is typical-

ly not possible in case study research because as Lee (1989. p. 35) points

out, "... the study of a single case commonly yields more variables than data

points-a situation that renders inapplicable the statistical c.ntrols vf

statistical experiments." Moreover, many case studies generate only qualita-

tive, not quantitative data. Consequently, there is no way to perform a

statistical test of the reasonableness of one's causal inferences.

Although one may not be able to perform statistical tests to determine

statistical conclusion validity, one can still address the internal validity

of case study research. At a more conceptual level, Lee (1989, p. 40) has

pointed out that "... it must first ,!ý emphasized that rathematics is a subset

of formal logic, not vice versa. Logical deductions do not require mathemat-

ics. An MIS case study that performs its deductions with verbal p-opositions

(i.e., qualitative analysis) therefore only deprives itself of the convenience

of the ru'es of algebra; it does not deprive itself of the rules of formal

lcgic, to which it may therefore still turn when carrying out the task of

makig controlled deductions" [italics hisi.

6-27

Yin (1984, p. 105) has emphasized the use of three modes of data

analysis for case study research: pattern matching, explanation building, and

time-series analysis. [Note: "Time-series analysis" will be considered as a

quasi-experimental design later in this chapter.] In its strongest form,

pattern matching "... requires the development of rival theoretical proposi-

tions articulated in ope-ational terms. The important characteristic of tlese

rival explanations is that each involves a pattern of independent variables

that is mutually exclusive: If one explanation is tG be valid, the others

cannot be. This means that the presence of certain independent variables

(predicted by one explanation) precludes the presence of other independent

variables (predicted by a rival explanation). The independent variables may

involve several or many different types of characteristics or events, each

assessed with different measures and instruments." Indeed, consistent with

the above discussion regarding the use of multiple pieces of evidence for con-

struct validation purpcses, causal inference iC enhanced if one uses different

types of measures to support one hypothesis versus its plausible rivals. The

MIS case study by Markus (1983) is an excellent example of the use oi this

mode of analysis.

In contrast to pattern matching, explanation building r,ýlies on itera-

tion, where an initial set of propositions is compared with the obtained data,

and subsequently revised and tested. The final explanation is seldom stipu-

lated at the start of the study. Rather, it develops as the data are examined

from a different perspective, one that emerges from the analysis itself.

Obviously, such an approach can be dangerous if it relies on building a myopic

chain of evidence focusing on support for this "new" hypothesis. Falsitica-

tion, not confirmation, must be the goal; consequentl2 , rival plausible

hypotheses must be pitted against one another. The case studies by Bourgeois

and Eisenhardt (1988) and Kaplqn and Duchon (1988) are excellent examples of

this second mode of analysis.

It should be noted that both modes of data analysis require that plausi-

ble rival hypotheses be known so that they can be evaluated against the data.

This is, as we pointed out before, a difficult task. Moreover, it is a

weakness compared to true experiments where randomization can be uged t'

0
6-28

control for the spurious effects of many (but not all) unknown hypotheses.

Nevertheless, they are powerful modes of deduction.

Lastly, we consider the external validity of case study research. As

was discussed earlier in this chapter, external validity refers to the

generalizability of the obtained findings. Case studies have been routinely

criticized on external validity grounds for, the argument goes, how can one

generalize from a sample size of one? Yet, the same criticism can be leveled

at a researcher attempting to generalize from a single experiment, for it

would be just as precarious. Experiments and case studies are no different in

terms of their external validity requirements. Both depend on theoretical

propositions being tested and not falsified under various empirical conditions

in order to assess how generalizable they are. The more conditions for which

the predictions of a theory hold, whether these theoretical propositions are

tested by experiments or case studies, the greater the external validity of

the theory. The same holds for an expert system or any form of information

technology. The broader the types of operational conditions for which the

expert system enhances performance, the more confidence one has in its ability

to enhance performance in subsequent settings.

Time-Series Designs

We now turn to consider time-series designs, the first of the two quasi-

experimental designs considered in this chapter. As you will remember, time-

series designs were juxtaposed to the one-group pretest-posttest design where,

in our case, implementation of the expert system represents the treatment.

The problem with this pre-experimental design is that it does not in any way

control for the effect of other plausible hypotheses that could have improved

performance between the pretest and the posttest.

The "simple interrupted time-series design" (Cook and Campbell, 1979, p.

209) uses the group itself as a partial control for alternative hypotheses by

mpasuring the performance of the group repeatedly both before and after the

treatment intervention. For example, if repeated measurements had shown that

a group's performance was increasing linearly by 3 points on every observa-

tion, then it would be inappropriate to conclude that the expert system had a

6-29

positive affect on performance because the posttest was 3 points above the

pretest. Similarly, if performance is known to vary with known cycles or

actions, such as the time of year or the change in administrations, it would

be inappropriate to assume that the expert system had significantly affected

group performance without first accounting for these known causes of perfor-

mance regularities.

The construct validity of a simple interrupted time-series design again

depends on the extent to which one is measuring what one wants to measure.

Like case studies, one should use multiple pieces of evidence to measure other

variables that might ',e confounded with the expert system's implementation, as

well as all dependent variables. Again, the focus should be on the convergent

and discriminant validity of these measures; measures supposedly measuring the

same construct should be correlated, while those measuring different con-

structs should not. Moreover, as Cook and Campbell (1979, p. 231) point out,

"... data needs close scrutiny. Operational definitions need to be critically

examined, and one should not assume that the construct label applied to a

particular measure is necessarily a good fit. Inquiries have to be made about

shifts in definition over the time the record is kept; where possible, the

nature of the shift needs documenting." Also, special attention must be given

to the reliability of the measures. Unreliability adds error into the

measurement process, thereby reducing one's ability to find differences

between the pretest and posttest observations.

The issues regarding Type I and Type II errors and statistical power

that were discussed regarding the statistical conclusion validity of ex-

perizrents are just as appropriate to quasi-experiments. For the simple

interrupted time-series, this means that one wants to be able to make a

reasonable statement as to whether the posttest observations represent a

different pattern from the pretest ones. As the above "3-point example"

illustrates, one should not use traditional statistical tests to assess mean

differences. And, as McCain and McCleary (1979, p. 234) point out in their

review paper of different statistical methods for performing time-series

analyses, one should not use ordinary least squares (OLS) regression. "01.5

regression requires an assumption that residuals, or error terms associated

with each time-series observation, be independent. When naturally occurring

6-30

events or behavior are observed repeatedly over time, however, events closer

to each other in time tend to be more correlated with each other than with

events further removed in time. Since time is the independent variable of an

OLS time-series regression, it follows that the error terms of consecutive

observations are usually correlated ... [Consequently,] the estimates of

standard deviations (and hence, of significance tests) are biased" [italics

theirs].

There are numerous texts on time-series analysis and computer programs

to help one perform it; consequently, we will not go over the different

methods here. Indeed, consistent with our earlier discussion of statistical

tests for experimental designs, we are hesitant to discuss time-series

analysis methods in any detail because adequate discussion of the topic takes

considerably more space than is available here. Instead, consistent with the

detailed presentation by McCain and McCleary (1979), we will here only

enumerate the four basic steps in the analysis for a simple interrupted time-

series design.

The first step is called "identification." The goal is to identify the

systematic component in the data that is not dependent on the treatment (i.e.,

the expert system). The systematic component is responsible for the correla-

tion (called "autocorrelation") in the data independent of the treatment.

When the autocorrelation structure is known, it can be explicitly incorporated

into the model so that one can calculate unbiased estimates of the standard

deviations and, thereby, statistically test the treatment's effect on the

residuals.

The second step is "estimation;" that is, once a likely model has been

identified, its parameters are estimated with programs using appropriate

nonlinear equations. The third step is "diagnosis." The autocorrelation and

partial autocorrelation of the residual terms are examined to diagnosis the

adequacy of the estimation model. The goal is to conclude that the residuals

arp unbiased, essentially behaving as white noise. If they are, then one has

an adequate model for predicting regularities in the data, independent of the

treatment. If they don't, then one repeats the process of identification,

estimation, and diagnosis until an acceptable model is found.

6-31

When one has a predictive model with unbiased residuals, one can proceed

to "intervention hypothesis testing." In this step, one adds an intervention

component to the model. The intervention component represents the hypothe-

sized effect of the treatment to the model; it is represented by n "transfer

function." For example, if the hypothesized effect is that of an abrupt,

constant change, it would be represented by a step function. Gradual,

constant change can be represented by a linear function. "If the intervention

component increases the model's predictability, the parameters of the inter-

vention component will be statistically significant ... Expressing the

hypothesis testing component of time series in this way illustrates that the

statistical analysis does not by itself test 'cause.' It asks only whether a

statistically significant change in the series takes place at a specified

point in the series. No explanations for the change are evaluated" (McCain

and McCleary, 1979, p. 262).

When all is said and done, the simple interrupted time series is a weak

design because of a number of threats to its internal validity, not statisti-

cal conclusion validity. The most obvious and significant threat to internal

validity is that some simultaneous event ot.,er than the treatment caused a

change in performance. Cook and Campbell (1979, p. 211) have referred to this

as a "main effect of history." Another internal validity threat is "instru-

mentation." As they point out, administrative changes are sometimes accompa-

nied by changes in record keeping. Since it is not uncommon for the implemen-

tation of an expert systems to cause administrative changes as well, changes

in record keeping is a plausible rival hypothesis. And, third, "selection"

could be an internal validity threat if the implementation of the expert

system were also accompanied by a shift in the composition of the test group.

[Note: It is assumed here that the threat to internal validity posed by

seasonal or cyclical impacts on performance have been controlled for through

the time-series analysis; otherwise, they pose a threat to internal validity.)

In an effort to control for these threats to internal validity, Campbell

and Stanley (1966) advocated the addition of a control group to the time-

series design. The control group should be comparable to the treatment group

but, as Cook and Campbell (1979) demonstrated, attempting to matcr, the Eroup'.

at the point of the intervention can be difficult and sometimes cause spurious

6-32

effects. What is most important is that the control group be similar to the

treatment group in the sense that it can be subjected to the same historical,

instrumentation, and selection effects. Consequently, a significant shift in

the posttest versus pretest observations of the treatment group, but not the

control group, would disconfirm the above rival hypotheses compared to the

hypothesized treatment effect.

The threats to external validity for the simple interrupted time-series

design still exist when a control group is added to the design. Again, this

is because external validity has to do with the generalizability of .te

results to settings and groups different from those in the test. The broader

the range of settings for which the results hold, the better the time series'

(or experiment's or case study's) external validity.

Nonequivalent Control Group Design

This quasi-experimental design was juxtaposed to the posttest-only

design with nonequivalent groups. The latter is a pre-experimental design

because the treatment and control groups are compared only on a posttest. The

nonequivalent control group design adds a pretest measure for both groups in

an effort to control for factors, other than the treatment, that might affect

performance.

The nonequivalent control group design is similar to the time-series

design with a control group, but it utilizes only one pretest and one posttest

observation, a situation not uncommon in operational environments. As a

result, however, it is not as effective at controlling for threats to internal

validity as the "time-series with a control group." Moreover, it requires

that a number of treatment and control groups be sampled because it uses only

one pretest and posttest score per group. Although different types of

measurements (i.e., multiple pieces of evidence) can be used to obtain this

pretest and posttest score, one has a significantly different type of situa-

tion from that occurring in a time-series design where there are numerous,

repeated pretest and posttest scores (using the same measurement instruments)

over time. Consequently, nonequivalent control group designs use different

statistical tests for dealing with statistical conclusion validity.

6-33

We will not consider the construct and external validity issues inherent

in nonequivalent control group designs, for they are similar to those for

experiments, case studies, and time-series designs considered above. Rather,

we consider statistical conclusion validity and internal validity, in turn.

When considering the statistical conclusion validity of nonequivalent

control group designs, it should be remembered that randomization is not

employed. The word "nonequivalent" is used to convey the fact that one can

not be sure that the populations from which the selected groups are sampled

are actually the same on all pretest measures, even if there is no difference

in the obtained pretest measures for the treatment and control groups. To

quote Reichardt (1979, p. 148), "The label 'equivalent' does not imply that

two groups would have identical mean scores on any variables measured at the

pretest. Rather, it indicates that if the random assignment procedure were

repeated over and over again so that the sample sizes in the two groups became

infinitely large, the two groups would then have identical means (or medians,

variances, or the like) on all variables measured at the pretest. Thus our

use of the term equivalent denotes an equivalence of expected (population)

values and not an equivalence of cbtained (sample) values. We use the term

nonequivalent in a similar fashion; assuming that if the same nonrandom

selection process were repeated over and over again, the two treatment groups

would differ in a number of ways" [italics his]. The bottom line is that

"[w]ithout randomization, selection differences between the groups are

inevitably introduced at the start of the [study]" (p. 197).

Reichardt (1979) reviews three principle analysis methods for controll-

ing for selection differences measured by the pretest. The first method is

analysis of covariance (ANCOVA). It examines the difference in the groups'

posttest scores as a function of the pretest scores. A significant effect

when pretest differences are statistically controlled for suggests that

improved performance is a function of the treatment and not the groups'

starting point. The second method is analysis of variance (ANOVA) with

blocking or matching. Block membership (e.g., high versus low pretest score)

is entered into the ANOVA so that one can test the effect of the pretest

level, the treatment versus control group condition, and interactions between

the two on the posttest scores. The third method is an ANOVA with gain

6-34

scores. That is, one performs an ANOVA on the experimental conditions, but

now using the change in performance between the pretest and posttest as the

dependent variable.

In his review, Reichardt (1979) points out that all three methods have

threats to statistical conclusion validity. For example, random measurement

error in the pretest can bias the estimate of the regression slope (used to

estimate the pretest-posttest dependency) in the ANCOVA and, thereby, bias the

estimate of a treatment effect. In the case of an ANOVA with matching, it is

often difficult to match treatment and control representatives in actual

settings because these groups tend to differ in their extreme values. For

example, the treatment group may have a smaller number of high pretest scores.

In an effort to "match" the groups, one might drop representatives with

extreme values and, potentially, instill a systematic bias in the estimated

treatment effect. And the statistical power of the ANOVA using gain scores,

as compared to the ANCOVA or ANOVA with matching, depends heavily upon the

particular circumstances of the research because the former tests whether the

mean pretest-posttest change is significantly different between groups, not

whether the mean posttest scores are significantly different. "The obvious

conclusion is that none of the above techniques or any others should be

blindly or thoughtlessly used to analyze data from nonequivalent group designs

... It must be remembered that a statistical technique specifies a model for

the data ... Thus the statistical model must be carefully tailored to fit the

unique characteristics and demands of the data at hand" (p. 186).

We now turn to consider internal validity. Specifically, Cook and

Campbell (1979) point out that the nonequivalent control group design controls

for all but four threats to internal validity. The threats are all a function

of the selection bias built into the design by the lack of randomization.

First, the design does not control for the effects of a "selection-maturation"

bias because the respondents in one group might naturally change over time

irrespective of the treatment. Experience is one way this might happen that

is of particular importance when testing and evaluating expert systems. For

example, let's assume that an expert system was fielded for use by operational

personnel with less experience than experts, which were selected as the

control. In this case, one would expect the novice group to improve in

6-35

performance over time as it gained experience (i.e., on the job training),

irrespective of the hypothesized advantages of the expert system. Consequent-

ly, another group of novices, but now not receiving the expert system, would

be required to determine whether improved performance was due to thp -xpert

system or experience.

The second threat is "instrumentation." As Cook and Campbell (1979, p.

105) point out, "It is not clear with many scales that the intervals are

equal, and change is often easier to detect at some points utt a scale than

others. Scaling problems are presumably more acute the greater the non-

equivalence of the experimental groups and the farther apart they are on the

scale, especially if any of the group means approaches one end of the scale

where ceiling or floor effects are likely." Such ceiling effects are quite

plausible for the control group of experts considered in the example above.

As a result, their performance may, simply by the nature of the measurement

scale, be constrained; consequently, any positive improvement by the treatment

group may, by comparison, seem significant. Conversely, if the experts were a

treatment group receiving the expert system, their scores may not reflect

actual performance enhancements due to the artificial constraints of the

measurement scale.

The third threat to the internal validity of nonequivalent control group

designs is "statistical regression" to the mean. That is, if groups are

selected on the basis of extreme scores on a pretest, their scores can be

expected to move back (or regress) to the average (i.e., mean) simply because

of measurement error in the pretest. This might occur in the above example if

members of the novice control (i.e., no expert system) group were selected on

the basis of poorest performance on the pretest. Their performance on the

posttest would improve due to regression to the mean, irrespective of whatever

other gains were achieved due to experience.

Lastly, the fourth threat to internal validity is "local history," which

represents an interaction of selection and history. This occurs when either

the treatment or control group is exposed to events other than the treatment

that might affect its performance. In the above example, this might orcur it

the expert and novice groups worked different shifts, worked in different

6-36

parts of the country (or world), were subjected to systematic differences in

administrative procedures or supervision, etc.

With the discussion focusing on threats to internal validity, the reader

should not lose sight of the fact that the nonequivalent control group design

is a reasonably good one. It is certainly far superior to all three pre-

experimental designs.

CHAPTER SUMMARY

This chapter has reviewed the use of experiments, appropriate case study

designs, and two types of quasi-experimental designs for performing empirical

tests and evaluations of expert system technology. The definitions for these

empirical evaluation methods are presented in Table 6-4 for summary purposes.

The discussion has been at a general level.

Table 6-4: Definitions of Empirical Evaluation Methods

Erperi.nent (factorial):

One or more factors are systematically varied as the independent vari-
able(s); participants (or organizational units) are randomly assigned to
the independent variable conditions; and the dependent variables are
quantitative (and preferably, for our purposes, objective) measures of
system performance.

Case Studies:

An empirical inquiry investigating a contemporary phenomenon within its
real-life context; using multiple sources of evidence; and striving to
explain how or why something happened by logically linking the data to
the propositions supporting one rival hypothesis versus others.

Quasi-Experimental Designs:

Settings that permit some control over the scheduling of data collection
even though one does not have complete control over the scheduling of
experimental stimuli as provided by randomization. (Simple interrupted
time-series designs, the time-series design with a control group, and the
nonequivalent control group design were considered.)

6-37

Although some of the specifics of implementing these different empirical

test and evaluation methods have been considered, there has been no attempt to

cover all the details that would be found in experimental design and statisti,

cal analysis texts. Rather, the goal was to sensitize the reader to the

different issues that should be considered when attempting to empirically

demonstrate the performance benefits of an expert system. For that reason,

the four types of validity, which are summarized in Table 6-5, were used a.

criteria for considering each of the different approaches. In particular, by

focusing on the threats to these different types of validity, it i? hoped that

readers will be able to better formulate research designs (i.e., strategies)

for assessing the performance impact of an expert system. Or, to put it more

bluntly, without well formulated and conducted empirical evaluations, one has

no way of knowing whether the expert system helps, hinders, or has no effect

on performance.

Table 6-5: Definitions of Reliability and Validity

Reliability:

Demonstrating that the operations of a study can be repeated with the
same results.

Validity:

Demonstrating that the results of a study are well grounded. The differ-
ent types of validity:

Internal Validity - Establishing a causal relationship,
whereby certain conditions are shown to lead to other
conditions, as distinguished from spurious relationships.

Construct Validity - Having good operational measures for
the concepts being measured.

Statistical Conclusion Validity - Ensuring that the study is
sensitive enough to permit reasonable statements regard-
ing the covariation between independent and dependent
variables, and using appropriate statistical tests of this
covariation.

Erternal Validity - The extent to which the results of the
study can be generalized to the populations, settings,
treatment variables, and measurement variables of ulti-
mate interest.

6-38

In closing this chapter, we again note the overriding perspective

represented by the SHOR paradigm that has guided this presentation. Specifi-

cally, we see the evaluator's job as helping members of the sponsoring team

decide whether the expert system is an effective option for dealing with

hypotheses regarding the current and/or future problem environment with which

the organization will be dealing. Remember, the initial decision to build the

expert system was nothing more than a hypothesis that the expert system will

improve the organization's decision making and, in turn, its performance.

Evaluators can use empirical test and evaluation methods to not only help

members of the sponsoring team assess the adequacy of this hypothesis, but

also identify what corrective actions to take if the expert system does not

significantly improve performance. This latter point is extremely important

from a prototyping perspective, for empirical feedback provides critical

guidance for improving the expert system. Correspondingly, the failure to

identify whether or not the expert system actually improved performance

eliminates the possibility of improving a deficient system.

6-39

CHAPTER 7:

PULLING IT TOGETHER

The framework described in Chapter 3, along with the detailed technical,

empirical, and subjective method described in Chapters 3 through 6, provides a

comprehensive way to guide the testing of expert systems. A key feature of

the approach, however, is the incorporation of judgments regarding the

relative importance of attributes. This forms the basis to guide the testing

by directing testing activities to those areas that are regarded as most

important and by using testing resources most intensely in the most important

areas. This chapter explains the considerations that go into these judgments

and offers suggestions to the tester who is faced with the task of determining

what to test and how to aggregate the results of the tests. This chapter,

unlike the previous ones, contains many opinions of the authors that have not

been subjected to extensive research or application. These opinions are

offered in the spirit of useful suggestions rather than definitive fact. The

further use of the methods described in this handbook will contribute refine-

* ments to these suggestions.

A key aspect in "pulling it all together" is a four-step approach to

using the framework in Figure 7-1 (which is a reproduction of Figure 3-9).

First, establish the relative importance of the different major areas (the top

level in the framework: knowledge base, inference engine, "service," perfor-

mance, and usability), then sub-areas, and then attributes. This information

is then refined into weights. Second, examine each attribute, determine its

measure, and determine how to collect that information. Third, collect that

information about the system being tested. Fourth, process the information

through the MAUA. Fifth, evaluate the results by comparisons between actual

results and the desired or required results.

WEIGHTING DIFFERENT PARTS OF THE HIERARCHY

A useful way to establish weights in the hierarchy of Figure 7-1 is to

start at the top and determine the relative importance of each major area:

knowledge base, inference engine, "service," performance, and usability. The

answer might be that usability and knowledge base are equally most

7-1

I m
W~ < uL

0@

V) <1 i-

Vo w

L~rI

0J ILI La W CL

Cr LL

00

0

0

z cnro L .

3< Ea'' 0t
a 2 X t

w LU ccwD

W o i
cc ::c -,uzJ, _(

z j z w x= 1 ýw w

-w S2r ., <Dcr Do~ CLj)L

* 0
00

w w c cC

z -.w w luw a 0 -c
3 t f w cc

z LjjUwLu L) - ccz w
uj.1W. u8r _jL0

C17-2)cot

important, followed by performance which is half as important as usability,

and service which is half as important as performance. Inference engine might

be regarded as unimportant for testing because the developer's testing is

considered sufficient assurance of the quality of the inference engine. These

judgments yield the following set of weights:

Nozmalized Weight
Attribute Weight (rounded)

Knowledge base 1 164
Inference engine 0 0
Service .25 .091
Performance .5 .182
Usability . 364

Total 2.75 1.00

The numbers in the column headed "Weight" are assigned arbitrarily to

agree with the judgments of relative importance. The normalized weights are

calculated by dividing each weight by the sum of weights. Normaliz:d weights

put the assessments on a consistent scale. This process is repeated at each

level in the hierarchy. For example, within knowledge base, an assessment is

made between structure and content. Within structure, an assessment is made

between logical consistency and logical completeness. Within logical com-

pleteness, an assessment is made amoig the four factors. When this process is

complete, sufficient information is available to calulate the normalized

cumulative weights used in Equation 3-1. (A detailed zxample of the method is

pre..ented in Volume 5, the User's Manual f'r TESTERC, the computer program

that incorporates the MAU hierarchy.)

These are the mechanics of the weighing system, but where do the

judgments come from? Ideally, this information will be stated in a specifica-

tion of requirements for the expert system. However, the ideal is unlikely to

be achieved. Many expert systems developments fail to produce any documenta-

tion of requirements, much less a specification of the relative importance of

testing different aspects 3f the system. In the absence of a requirements

statement, the program or project manager is the best source of information

about the relative importance of attributes. It is unlikely that the manager

will answer the full set of questions to specify weights for the complete

hierarchy, but it should be possible to elicit tradeoffs at the top level or

two of che hierarchy. The tester may then need to use his own judgments,

7-3

based on whatever information is available to get the rest of the weights.

Fortunately, the top weights are the ones that have the greatest effect on

what actually needs to be done to test the system. For example, high impor-

tance on usability indicates that the tester should try to get human subjects

to use the system in a realistic setting and fill out questionnaires.

Conversely, high importance on knowledge base indicates that extensive static

and dynamic testing of the code may be needed. High importance on perfcrmance

indicates a need for a good set of test cases. If the program or project

manager is unavailable or otherwise unwilling to provide these judgments, then

the program's developer may have some insights to the tradeoffs.

If no other source of tradeoff information is available, then the tester

must use his or her own judgment. This is a tricky prospect, and it is always

a good idea to generate a tentative set of tradeoffs and then attempt to

confirm or disconfirm those tradeoffs with a more authoritative source. In

any case, the source of tradeoff information and its authority should be

stated clearly in any test report.

In the absence of a more authoritative source for tradeoff information,

we offer the following suggestions based on a characterization of the expert

system and its intended use. This guidance is the opinion of the authors and

is not intended to replace more authoritative sources. It is offered as an

aid to testers who would otherwise be unable to continue without tradeoff

information. It is also offered as a suggested starting point to inform a

tester prior to his interviewing other sources such as the sponsoring agency.

To use our suggestions, it is first necessary to characterize four

aspects of the expert system: mission criticality, degree of automation,

expertise of the user, and the degree of distribution of the system. A

mission critical system is one that can affect seriously the health and safety

of people or large amounts of resources. It might be described compactly as a

system whose errors or misuse could result in loss of life or in large dollar

losses. Degree of automation refers to the extent to which the system makes

decisions on its own rather than provides advice to a human operator who a

the decision. Expertise of the user: Is the user an expert or a novice? If

a novice, is the user expected to increase in expertise by using the svstem?

The degree of distrilhution refers to the extent to which the svsLeai is

7-4

intended for use outside of the development group. (Notice that these

characteristics are not mutually exclusive.)

Mission Critical System

The first characterization is whether the system is mission critical.

If a system is mission critical, then this is an overriding consideration for

testing. For mission critical systems, it is extremely important to establish

a minimum competency for the expert system to ensure that it will not make

catastrophic errors. Important criteria requiring the greatest testing

attention are:

1. Knowledge Base and Inference Engine. Testing is needed to ensure
that the expert system will not produce disastrous decisions or
advice.

2. Quality of Answers. Here, testing should establish whether the
answers are an improvement over what would be done in the absence
of an expert system. Performance against ground truth is also
important.

3. Computer System and Speed. If specifications exist, these should
be tested, probably against a pass/fail criterion.

4. Inference Engine. Testing should be aimed at determining that a
disaster will not be caused by a faulty inference engine.

Other characteristics, including usability, are not as important for

testing. If an expert system is mission critical, then intended users should

be trained to overcome usability problems. If any testing is to be done on

usability, it should aim at identifying areas where further development or

training might be required. There may be exceptions to this general guidance,

cases where the tester must test a mission critical system for usability. In

such cases, it is imperative that the test subjects replicate closely the

intended user. This includes replicating the training that the typical user

would undergo. It also includes replicating the user's rank. If a mission

critical expert system will be used by a general and if it must be tested for

usability, the general must be used as a test subject.

7-5

Automatic System

Expert systems that operate automatically without human interaction

require a higher degree of accuracy, since there is no chance for a human to

override and correct an erroneous decision by the system. By the same token,

usability factors are unimportant, since there is no human user, but system

integration features (analogous to usability features for a machine) are

important. The following are the most important criteria:

1. Performance, especially against ground truth.

2. System Integration, especially if the expert system is embedded in
a larger system.

3. Knowledge Base:

a. Accuracy of answers and facts. If the system operates
automatically, there is no chance for a human to correct a
system error.

b. Functional completeness. The system must be able to reli-
ably address all the interactions for which it is designed,
since a human cannot intervene.

c. Logical consistency. To the extent that inconsistencies can
cause erroneous performance, i.e., conflicting or circular
rules.

4. Judgmentally Assessed Quality. For areas where judgment is the
only way to assess the quality of the answer, this is important
(again, because a human will not be able to correct a mistake by
the system).

Unless the use of the automatic expert system will impact organizational

factors, all usability criteria are unimportant.

Expertise of the User

Assist an Expert. Many expert systems are designed to assist a user who

is already an expert. For systems that are not mission critical and that

assist an expert, greatest testing attention should address:

1. Acceptability. The system must be acceptable to the expert or it
will not be used. If the system has to support multiple experts

7-6

in an organization, then it must be acceptable to the organiza-
tion.

2. Ease of Use. It is important that the expert finds the system
easy to use.

3. Judgmental Quality of Answers. For the expert to rely on and use
the system, he must feel confident about the quality of answers
that this system produces. NonJudgmentally determined quality
indicators are less likely to impress the expert.

4. Organizational Impact. If the system is developed somewhere other
than at the intended user's organization, its organizational
impact is an important determinant of whether or not the system
will be used.

Since the person assisted is an expert, logical problems (consistency,

completeness, and accuracy) are much less important and require less testing.

Assist a Novice. Many expert systems are intended to assist a novice

and to improve a novice's performance, possibly to an expert's level. For

systems that are not mission critical and that assist a novice, the following

should receive greatest attention in testing:

1. Judgmentally Determined Quality of Answers. This may provide the
novice with experiences similar to having an expert mentor. The
novice is assisted with answers and reasons that are similar to
those of an expert.

2. Quality of the Knowledge Base. The novice is less able than an
expert to compensate for deficiencies in the structure or content
of the knowledge base.

3. Usability. Increased usability will likely translate into in-
creased use by the novice. However, usability is less important
for a system that assists a novice than for one that assists an
expert because it is assumed that a novice will have a higher
tolerance for training than will an expert.

4. Extent of Coverage. Again, the novice cannot compensate for
deficient coverage.

5. Organizational Impact. Organizational impact will influence
heavily the extent of use.

7-7

Widely Distributed

Some expert systems are developed with the intention of being used

widely; i.e., the system will be used by people who were not involved in the

development and who may even be in different organizations. Such systems may

also cause a large organizational impact by changing the way that things are

done. Such systems are the most difficult to test and, except for mission

critical systems, the most important to test extensively and well. All

factors need to be considered in testing widely distributed systems, because

the extent and manner of use cannot be predicted precisely. Different uses

and users will likely encounter different types of problems which could lead

to errors or disuse. To the extent that a widely distributed system is also

one of the types mentioned above, more attention should be given to some

attributes, but all attributes need to be tested at some level, and minimal

thresholds of performance need to be met on all attributes (although the

threshold may be very low for some attributes for some situations).

Two other characteristics of the expert system setting may also be

important-a constrained computer environment and a tight testing budget.

Some expert systems will operate near the limits of its computer's environment

due to either hardware or software considerations. (The condition may

manifest itself by slow operations.) In a constrained environment, the tester

should pay some attention to factors that affect performance in the con-

strained environment. These include computer usage factors and factors that

affect efficiency-redundant and subsumed rules, unreferenced attribute values

and dead ends, and features used. Examining these attributes enables the

tester to suggest changes to the system (e.g., to delete a little-used

feature) that could relieve some of the environmental constraints and improve

performance or other factors (e.g., speed).

Sometimes, extremely limited resources are available for testing. In

this case, what should a tester do? First, if the system is mission critical.

the tester should inform the appropriate manager of the inadequacy of the

testing resources and the possible dire consequences of using the inadequately

tested system. If no additional resources are forthcoming, the tester could

test those attributes listed above to the extent possible. Any testing report

should clearly state the limited scope of the tests and opinions of its

7-8

inadequacy. For systems that are not mission critical, limited testing may

suffice. Systems should be subjected to several cursory overall checks by

running a few test cases (e.g., a few typical cases and a few extreme cases

that are most likely to cause problems). Then, areas of highest importance

(e.g., as outlined above) should be tested, possibly using some of the less

resource-intensive methods. Test reports should again state the limited scope

of testing and qualify any conclusions as appropriate.

PERFORMING THE TESTS

After weights are specified at all levels in the hierarchy, the expert

system is tested against the bottom-level attributes. These tests provide the

information needed to apply Equation 3-1 and to complete the MAUA as described

in Chapter 3. Testing may be conducted by applying a combination of the

subjective, technical, and empirical methods described in Chapters 3 through

6. It may not always be possible to test the expert system against every

criterion in a thorough manner. This section provides some informal advice on

the factors that most affect the ability to test a system against the various

criteria, a description of an extensive test, and s',iggestions for how to

perform a reduced test. This advice is arranged according to sections in the

hierarchy. Again, the advice is the opinion of the authors.

Knowledge-Base Structure

Factors Affecting the Ability to Test.

1. Time. A complete testing of the knowledge-base structure for
consistency is time-consuming, especially in the absence of
automated tools.

2. Testing Resources. Because of the time needed, it is expensive to
perform this type of testing.

3. Automated Tools. Testing would be facilitated by automated tools
to characterize the knowledge structure and check it for undesir-
able properties. However, such tools are not now readily avail-
able.

Testing for Logical Consistency. To test extensively for logical

consistency, a tester must:

7-9

1. Characterize the entire knowledge structure in an appropriate
representation scheme such as a directed graph or matrix.

2. Examine the structure for undesirable characteristics such as
redundant, subsumed, conflicting, and circular rules.

For other than rule-based systems, similar Lests are possible if the

knowledge representation scheme (e.g., frames) can be transformed into an

equivalent rule base. A thorough examination of the logical consistency is

impossible for a large expert system.

In cases where exhaustive testing is impossible or impractical (e.g., in

large systems), a sampling of the knowledge base may be subjected to testing.

One sampling scheme that is often used is to check rules in pairs only. This

will detect many of the most common problems of consistency, but will not

detect the more complicated consistency errors introduced in longer logic

strings (see Chapter 4 for an example). Checking pairs of rules is a common

testing strategy and about the only one discussed in the literature.

Another strategy is to test a sampling of the knowledge base. This

could use techniques of simple random sampling or stratified random sampling.

Where it is possible, a stratified sample should be used that contains more

instances of critical rules-that is, rules that could lead to those decisions

with the potential for large errors.

Testing for Logical Completeness. In general, characteristics of

logical completeness affect the efficiency of operation of the expert system.

This, in turn, may affect the timeliness of response and operations. Charac-

teristics of logical completeness influence errors less directly than do

characteristics of logical consistency. However, in some situations, the

inference engine may designate a different order of rule firing when the

system is stressed, and this could lead to problems in logic. In addition,

errors of logical completeness are indicative of sloppy programming, which may

indicate other problems.

Extensive testing for errors of logical completeness uses the 'san

techniques as extensive tests for logical consistency. Reduced testing for

errors of logical completeness uses the same teciniques z; doe.. :Jdced

7-10

testing for logical consistency. In addition, the data for some tests of

logical completeness are generated as by-products from other tests. In

particular, test cases that are developed to test the quality or acceptability

of answers indirectly provide data for tests of logical completeness. For

example, cases where the expert system fails to provide an answer to a valid

set of inputs could be due to errors in logical completeness. Upon noticing

such a problem, the tester could follow up with a more detailed investigation

into the possibility of this type of logical error.

Knowledge-Base Content

Factors Affecting the Ability to Test. Unlike characteristics of

logical consistency and completeness, which can be assessed strictly by the

logic in the knowledge base, an assessment of the content of a knowledge base

requires an external standard. There are several possibilities for providing

such a standard.

1. Requirements Document. A complete requirements document should
sufficiently describe the area of application so that these
features can be tested.

2. Access to Expert. In cases where requirements are insufficiently
documented, an expert may be able to provide the necessary de-
scription of the application.

3. Access to the Operating Setting. In cases where requirements are
irr-,'ficprntly documented and an expert cannot adequately describe
the functional requirements, the tester may be able to infer these
requirements from an examination of actual input data and observa-
tion of people performing the tasks that the system will perform
or aid.

The accuracy of rules, especially for a knowledge-based system, might be

determined from an expert or panel of experts, and these experts must be

available. (An important exception is where some part of the rule base

encodes physical laws, in which case an expert is not needed.) An expert is

also needed to determine the adequacy of the knowledge representation.

Because of the expense of using experts, sufficient resources are needed to

test the content.

7-11

Testing for Functional Completeness. The following activities should be

included in an extensive test for functional completeness:

1. Determine the scope of application. If a complete requirements
document exists, this will provide a description of the range of
application including all types and numbers of inputs, all appli-
cations, and the range of conclusions that should be possible.

2. Confirm the scope of application. By examining actual data and
observing as much of the decision setting as possible, confirm the
range of inputs, applications, and range of conclusions required.
If there are differences between the observed scope and the stated
scope, make a note of the differences in the test report.

3. Test that the system responds to the range of data with the range
of conclusions. Exercise the system with test cases to determine
if the system responds appropriately. The choice of test cases
should include: typical or representative data (both quality and
quantity), data representing extreme inputs, and cases expected to
return extreme conclusions (especially more important conclu-
sions). If previous sets of test cases (e.g., those used in
development) are available, run these as well for a regression
test. Representative test cases provide information on normal
operations of the system. (By keeping track of the system's
operating characteristics such as speed, this test will also
provide information in assessing other attributes.) Extreme test
cases may be more important for assessing functional completeness.
The system should provide appropriate conclusions even to extreme
inputs. Similarly, legal inputs should be all that are required
to support extreme conclusions that are within the scope of
application. (This may be more easily tested in backward-chaining
systems.)

4. Select test cases outside of the range of application. Both
inputs and conclusions outside of the range of application should
be tested. This will provide data to assess whether the system
knows its limits and responds appropriately.

There are two areas that might cause testing for functional completeness

to be reduced---determination of the scope of application and selection of test

cases. In cases where a requirements document is not available, experts are

not available, and the decision setting is inaccessible to the tester, the

scope of application may need to be inferred by examining the code or by

observing the system's interactions and output. This will require more of the

tester's effort, but does not require resources that are not available. 1[

this method is used to infer the scope of the application, the tester should

be sure to state this clearly in the test report.

7-12

The other area for reducing testing is in the selection of test cases.

A reduced set may require fewer resources to select, run, and analyze. Even

with a reduced set, the tester should attempt to give some coverage to extreme

and important cases and some attention to normal operating cases.

Testing for Predictive Accuracy. The following activities are needed

for an extensive test of predictive accuracy:

1. Check all faces against a recognized authority. The authority
could be a reference document, a written regulation, an expert, or
a panel of experts. Reference documents are generally the best
sources for checking factual information. A single expert may be
sufficient to verify facts, but we recommend a panel of experts tn

verify the accuracy of rules. In cases where the facts will
change during the operation of the system (e.g., when the facts
are the contents of intelligence reports), the process for receiv-
ing, verifying, and changing facts should be tested. This test
will need to use a sample of test cases. Some test cases should
be chosen to be representative of the actual operations; others
should reflect the extremes of what might happen.

2. Check all rules. Check all rule sequences against the consensus
authority of a panel of experts. In most actual expert systems,
the number of sequences of rules will be too large to check and a
sampling is needed. If so, the sample should contain sequences
that represent normal operations, unusual sequences, and other
extreme sequences that could lead to extreme conclusions.

3. Verify the adequacy of sources. Official guidance or regulations
may specify some sources of facts. At the other extreme, a
consensus of experts may be needed to certify the expert whose
expertise was encoded in the system.

4. Test the procedure for changing the knowledge base. Determine
whether, and under what conditions, the knowledge base (e.g.,
rules, frames, etc.) could be changed, who is allowed to make the
change, and how. Assess the criticality of the changeable portion
of the system, and verify that allowed changes are appropriate.
The authority on the appropriateness of the changes could be a
regulation, a requirements document, an expert, or a manager of
the operation.

Several changes in procedure could be used if resources or conditions do

not permit or require extensive testing of content. These include:

i. Use a single expert Instead of a panel of experts. It is usually
cheaper and easier to use a single expert, and, unless the system
is critical, a single expert will often suffice.

7-13

2. If requirements documents do not address the factors that the user
should be allowed to modify, the tester could use his judgment.
If the tester uses his judgment, he should state this, along with
any reasoning, in the test report.

3. Use available documents in the absence of authoritative refer-
ences. In these cases especially, the sources should be indicated
in the test report.

4. Rely on reputation or apparent expertise (e.g., as indicated by
position or title) to assess the adequacy of the source. If it is
difficult to establish credentials definitively, this may suffice.

Inference Engine

As a practical matter, it is difficult to test an inference engine, ard

most testers do not even try. For noncritical applications of widely used and

established environments, tools, or shells, this practice should not cause a

serious problem. The widespread use of the tool will probably turn up most of

the problems with the inference engine, and the noncritical nature of the

application limits the seriousness of possible problems. Furthermore, other

tests (e.g., those aimed at discovering the correctness of reasoning or of

conclusions) can find some of the problems that could be caused by a faulty

inference engine.

The development of benchmarks would aid in the testing of inference

engines. A benchmark is a standard module of coded knowledge with known,

proven-correct results that can be coded on a variety of inference engines.

The correct performance of the inference engine on a comprehensive set of

benchmarks provides strong evidence that the inference engine is correct.

Unfortunately, such a set of benchmarks has not yet been developed.

Another approach to testing inference engines is to code identical

knowledge bases in different inference-engine products (e.g., shells) and

exercise these programs in parallel. If the behavior of all of the systems is

the same, this gives some evidence that the inference engines are free of

problems. However, this evidence is not absolutely conclusive. Furthermore,

different results indicate problems in one or more inference engines, but ma'.

not indicate which particular inference engine is faulty. This procedure is

7-14

also expensive, and the expense will be hard to justify for any but the most

critical expert systems.

"Service"

Factors Affecting the Ability to Test.

1. System Description. In order to test system compatibility and
integration, the target hardware, software, and organizational
systems need to be specified and defined.

2. Automated Tools. Testing for internal machine characteristics may
require automated support tools.

3. Access to Hardware and Software. Expert systems that are designed
to be operated on several systems should be tested on those
systems, and this requires access to the full range of intended
hardware and software.

Testing for Service Requirements. An extensive test for service

requirements would include the following:

1. Direct measurement of some items such as set-up time.

2. Use of internal mechanisms or automated tools such as internal
"clocks" and internal machine utilization maps.

3. Operating the expert system on the full range of targeted hardware
and software platforms.

4. Complete checking of system integration attributes.

A reduced test of service attributes could be attained by attempting to

operate the expert system in a reasonable approximation of its intended

operating setting (hardware, software, operating personnel, organization) and

noting problems with "service" attributes.

Performance

Factors Affecting the Ability to Test.

I. Ground Truth. Actual test cases with correct, ground truth
answers form a solid basis for testing performance. Most expert

7-15

system applications are not directed at situations where such
answers exist. However, it is still useful to search fvr parts of
an expert system (e.g., a forecasting module) that can be tested
against ground truth.

2. Availability of Experts. Experts are likely to be required to
judge the performance of an expert system. Experts are generally
scarce and expensive.

Testing for Performance. To test an expert system's performanze

thoroughly, a test should:

1. Use many test cases. These cases should include instances of
ground truth, as well as instances thac require expert judgment.
Cases should be chosen to simulate the expected and extreme
aspects of the intended use of the expert system, both in the
difficulty of the problem aid the level and timing of input. In
addition, some cases should probe the limits of the system's
operation, by being at the extremes of inputs and at the extremes
of consequences.

2. Use a group of experts. Wo recommend the use of a g:oup of
experts to judge the quality wZ the expert system's answers and
reasons.

3. Analyze data and perform statistiral tests. Chapter 5 provides
the details on how to analyze data.

Reduced testing of performance would use fewer test cases and fewer

experts. Test cases should still be chosen to represent the expected situa-

tion and some of the extremes. The methods described in Chapter 5 are useful

for choosing sample sizes. A single expert will often suffice if the ezb'trt

system is not mission critical.

Usability

Factors Affecting the Ability to Test.

1. Availability of Sibjects. Subjects are necessary to test for
usability. Usability features can be ascertained only by observ-
ing or questioning users.

2. Access to Realistic iIrcumstances. Having actual hardware.
software, other equipment, realistic problem s.-.enarios, and
realistic personnel and organizational setting provides the basis
for a reliable test of usability.

7-16

3. Special Facilities. Special facilities such as unobtrusive, one-
way observation rooms aid in testing uLservable aspects of usabil-
Icy.

Testing for Us-b51Lty. An extensive test for usability will include:

1. Use many test subjects. Ideally, the test subjects will have the
level of skill and training, including training in the use of the
expert system, as the ultimate intended user. The use of many
subjects will allow the tester to perform statistical analyses of
usability data.

2. Use realistic settings. Ideally, the organizational setting, as
well as hardware, software, and other equipment, should replicate
the setting in which the expert system will be used. Additional-
ly, a full range of realistic test scenarios should provide the
basis for assessing usability under extreme conditions such as
time stress, as well as under routin. conditions.

3. Administer questionnaires. Both types of questionnaires in the
Appe..dix are appropriate for eliciting usability informeilon. In
an extensive test, both questionnaires should be used and this
should be supplemented by open-ended interviews and follow-up
questions.

4. Observe behavior. The behavior of subjectr should be observed and
the extent of use, manner of use, and features u.ed should be
recorded. This information can counter biases that subjects may
express in answering questionnaires. Ideally, an unobtrusive one-
way observation room should be used so that the observation does
nct affect the subject's behavior. Some aspects, such as a log of
features used might be automated as part of the computer system,
but -are should be taken to avoid changing the operation of the
expert system.

Reduced tescing for usability can be achieved by using fewer subjects,

fewer scenarios, and fewer questioning techniques. Even with fewer subjects,

attempts should be made to obtain subjects with the appropriate skill and

training levels. In any case, the tester si.ould describe the test subjects in

the test report (e.g., by number, rank, training, job function, etc.). Fewer

scenarios should still reflect both the normal operating condition and a

stressed conditic'i, if possible. In many cases, the simpler questionnaire

(the one with Likert-type scales) should be sufficient. Extensive observation

may be impossible, but even a cursory observation by walking around near the

end of the test can provide some useful information.

7-17

CHAPTER SUMMARY

This chapter addressed aspects of pulling the ideas from Chapters 3

through 6 togetv'cr -n a test ¢,f aai. epert •yszem. We first discj>.... dzpec:,;

involved in establishing weights in a mulitiattribute utility tramework and how

this framework can be used to elicit irfrmatlon alo-t: prct :--6s to

test from sponsoring agencies. Next, we offered suggestions on the relative

importance of different attributes based or a charAc'terizatinn of the expert

system. Finally, we offered suggestions for testing activities in each major

attribute category based on the extent of testing that is feasible. We also

discussed factors that could !nfluence or limit the ability to test for each

category of attributes. The suggestions offered in this chapter are the

opinions of the authors.

7-18

CHAPTER 8:

OTHER APPROACHES TO TEST AND EVALUATION

Thus far, we have not explicitly focused on the issues of verification

versus validation, static versus dynamic testing, software quality metrics,

or design and coding. standards. This chapter will do so in three subsec-

tions, respectively. Each subsection will first define the issues and

terms, and then identify test and evaluation criteria and attributes in

Table 2-1 that address them.

As indicated in previous chapters, subjective, technical, and empir-

ical test and evaluation methods are designed for assessing the system's

score on different criteria and attributes. The criteria and attributes

are the critical reference point-;, not the methods. By focusing on the

criteria and attributes, one can subsequently identify the test and

evaluation methods addressing verification versus validation, static versus

dynamic testing, and various software quality factors. As mentioned

earlier, we do not address software design and coding standards.

VERIFICATION VERSUS VALIDATION

Verification refers to assessing how well the system was built.

Validation refers to assessing whether or not the right system was built.

Verification addresses the internal correctness of the system. Validation

addresses the external correctness of the system. Verification tests for

logical inconsistencies in the system and programming bugs in the software.

Validation tests for the accuracy of the information in the system, and for

its usability by operators performing their tasks.

The shaded portions of Figure 8-1 identify the criteria and attributes

addressing expert system verification; the unshaded portions address expert

system validation. Verification means testing for the logical consistency

and logical completeness of the expert system's knowledge base, inference

engine, and "service features." The focus is on ensuring the internal

correctness of the system. Even if the knowledge base's content were of

8-1

4z

-,'

o W 0

L) Se t
w 0)c

U- LiU

cr 00

CLO

a cLO
0 4:

:D 0

cc LL -- CK

~a y

0~ -j>
@00 a- 0 f

07~~ U

2:c~j Jr~

cc c

w w- _ a
Uj U 000

wt z 0

_jw-Ja

(D cr c
-L, ,ulF- 7K ILJ
f 4; LzLJc

z u c ,CL

0 13- - w 8w2

low quality, one could still verify that the expert system was free from

any logical flaws and that it was designed and programmed well.

In contrast, validation means testing for the functional completeness

and predictive accuracy of the knowledge base's content, and for all

performance and usability attributes of operators working with the system.

The focus is on ensuring the external correctness of the system. We want

to validate that the knowledge base contains expertise and, more generally,

that the expert system permits its users and the larger organization to do

their job better.

As Table 8-I illustrates, the overall utility of an expert system

depends on successful verification and validation testing. As we have

discussed earlier, the relative importance of testing all the attributes in

the hierarchy-that is, complete verification and validation-depends on

the environmental conditions facing the test and evaluation team. Never-

theless, there is an inherent dependency between attributes in the hierar-

chy. If verification testing identifies severe logical flaws in the

system, users will probably not perform well regardless of the expertise

embedded in the knowledge base. Similarly, if validation testing iden-

tifies severe performance and usability deficiencies with the system, they

may be due to the internal correctness of the knowledge base, inference

engine, or "service" components, and not the knowledge base's expertise.

For these reasons, complete V&V (verification and validation) should be

performed whenever possible.

STATIC VERSUS DYNAMIC TESTING

Static and dynamic testing are two approaches to testing conventional

software systems that are also applicable to expert systems. Static

testing refers to assessing system quality without actually executing its

code. Conventional static testing methods include code inspections and

walkthroughs and specially designed programs to assess logic problems,

structural errors, syntactic errors, and coding and interface consistency

with accepted programming standards. In contrast, dynamic testing refers

to uqing test cases to execute the code and thereby assess system quality.

Conventional dynamic testing methods include functional tests, performance

8-3

Table 9-1: Unking Software Quality Subfactors to Attributes in the Hierarchy

Software Software Attributes in
Quality Quality Hierarchy
Factor Subfactor

Correctness Traceability All Attributes if Use Hierarchy as a
Requirements Tool

Completeness Knowledge Base Structure
"* Logical Completeness
"* Functional Completeness

Usability: Scope of Application

Consistency Knowledge Base Structure
a Logical Consistency

"Service:" System Integration
"* Formats
"* Data Requirements
"• Documentation

Error Tolerance "Service:" Computer Usage
"* Degradation Handling
"* Input/Output Errors

Reliability Consistency Knowledge Base Structure
* Logical Consistency

"Service:" System Integration
* Formats
0 Data Requirements
0 Documentation

Error Tolerance "Service:" Computer Usage
"* Reliability (Hardware)
"* Degradation Handling
"* Input/Output Errors

Accuracy Knowledge Base: Content
"* Accuracy of Facts
"* Accuracy of Rules
"* Adequacy of Source

Inference Engine

8-4

Table 81: Unking Software Quality SubMactors to Attributes in the Illerarchy
(Continued)

Software Software Attributes in
Quality Quality Hierarchy
Factor Subfactor

Reliability Accuracy Performance: Ground Truth
(cont.) (cont.) * Accuracy

* Bias

Performance: Judgment
"* Quality of Answers
"* Quality of Reasons

Usability: Opinion
"* Confidence
"* Acceptability of Results

Structural Knowledge Base: Content
Simplicity * Knowledge Representation

Acceptability

Usability: Opinion
* Acceptability of

Representation Scheme

Usability: Explanation
0 Transparency of Expert System

Test Adequacy All Attributes in the Hierarchy are
Designed for Thorough Testing of
System

Efficiency Execution "Service:" Computer Usage
Efficiency 0 Run Time

Performance: Ground Truth
0 Speed

Performance: Judgment
"* Response Time
"• Time to Accomplish Task

Storage "Service:" Computer Usage
Efficiency 0 Space Requirements

* Capability (Hardware)

8-5

Table 8-1; Linking Software Quality Subfactors to Attributes in the llierarchy
(Continued)

Software Software Attributes in
Quality Quality Hierarchy
Factor Subfactor

Integrity Access Control Knowledge Base: Content
* Modifiability of Knowledge

Base

"Service:" Computer System

* Design

Access
Auditability

Usability Communicative- Usability: Observable
ness 0 Extent of Use

"• Manner of Use
"* Features Used

Usability: Opinion
"• Ease of Use
"• Acceptability of Man/Machine

Interaction
"* Input/Output

Usability: Explanation
0 Adequacy of Presentation/Trace

Usability: Organizational Impact
"* Work Style/Workload,

Skills/Training
"* Procedures/Structure

Operability "Service:" Computer Usage
"* Set-Up Time
"* Space Requirements
"• Reliability (Hardware)
"* Capability (Hardware)
"* Feature Use/Jumpings
"• Degradation Handling
"* Input/Output Errors
"* Skill Requirements

8-6

Table 8-1: Unking Software Quality Subfactors to Attributes in the Iierarchy
(Continued)

Software Software Attributes in
Quality Quality Hierarchy
Factor Subfactor

Maintain- Consistency Knowledge Base: Structure
ability 0 Logical Consistency

"Service:" System Integration
0 Formats
* Data Requirements
* Documentation
* Skill Requirements

Structural Knowledge Base: Content
Simplicity * Knowledge Representation

Acceptability

Usability: Opinion
* Acceptability of

Representation Scheme

Usability: Explanation
0 Transparency of Expert System

Modularity Knowledge Base: Structure

e¢lf "Service:" System Integration
Descriptiveness 0 Documentation

Documentation "Service:" System Integration
Adequacy 0 Documentation

Testability Structural Knowledge Base: Content
Simplicity • Knowledge Representation

Acceptability

Usability: Opinion
* Acceptability of

Representation Scheme

Usability: Explanation
* Transparency of Expert System

Modularity Knowledge Base: Structure

Instrumentation

8-7

Table 91-: Unking Software Quality Subactors to Attributes In the Hierarchy
(Continued)

Software Software Attributes in
Quality Quality Hierarchy
Factor Subfactor

Flexibility Modularity Knowledge Base: Structure

Self "Service:" System Integration
Descriptiveness 0 Documentation

Documentation "Service:" System Integration
Adequacy 0 Documentation

Expandability Knowledge Base: Content
Modifiability of
Knowledge Base

Portability Modularity Knowledge Base: Structure

Self "Service:" System Integration
Descriptiveness 0 Documentation

Machine "Service:" Computer System
Independence * Portability

Reusability Modularity Knowledge Base: Structure

Self "Service:" System Integration
Descriptiveness 0 Documentation

Machine "Service:" Computer System
Independence * Portability

Inter- Modularity Knowledge Base: Structure
Operability

Data Commonality "Service:" System Integration
& Data Requirements

Communications "Service:" System Integration
Commonality * Formats

8-8

tests, stress tests, and structural tests. Both static and dynamic testi.,,

methods are used to test the "service requirements" of conventional

software systems.

For some of the attributes in our test and evaluation hierarchy, it is

clear whether static or dynamic testing methods are most appropriate. For

example, static methods are most appropriate for assessing the System

Integration attributes: formats, data requirements, documentation, and

skill requirements. In contrast, dynamic methods using test cases, not

just loading and running the software, are most appropriate for assessing

the ground truth performance measures of accuracy and bias.

However, other attributes can be assessed using either static or

dynamic testing methods. For example, Chapter 4 overviewed static testing

methods (e.g., using flow graphs, incident matrices, and Boolean algebra)

to assess the logical consistency and completeness of the knowledge base.

In addition, we overviewed a program called Validator that uses test cases

to assess these attributes. Similarly, specific test cases, sometimes

embedded in a larger scenario, are typically used to assess the expert

system's usability. However, one could also give one a demonstration of

the system to obtain usability judgments. Although the system might be

executed, in the sense that the software is run, realistic test cases do

not have to be part of the demonstration. This is, however, an inferior

approach to assessing expert system usability.

The shaded portion of Figure 8-2 identifies those criteria and

attributes that are typically assessed by static testing methods. The

unshaded portion of Figure 8-2 identifies the criteria and attributes

typically assessed by dynamic testing methods.

SOFTWARE QUALITY FACTORS

Sizemore (1990) has recently matched various test and evaluation

methods to software quality factors (or metrics) identified in the software

engineering literature, especially in the Software Quality Engineering

Handbook and in McCall and Matsumoto (1980). In particular, Figure 8-3

8-9

zz

U)I- z
in 0 4w 0r

2 < j
00

u. Uw cc

IL w
ccz

L 00

z CLc~~-U) _
U. 0

0 0 pA

z c

LL)

a 9

8-10tz

QUALITY 01"fIONO# USIR ACQUISITION
FACTOR CONCERN CONCERN

EFFICIENCY :,r- qsicdtxiauwith minlfmum oonsiumption 04
*qmpL*W *fl -id swing n~0W05g.reocs7

ýINTEGAITY Th hyo 43mi @VO to Coto unuf e tW swaei. 4 ?soom so or modilcmdo of system softwaris or data.
PERFORMANCE

(rico dn ?

RLAIIY The abt,* of a acfihmae systemi to petlmm its What oofidmnoe can beh
RELADLIY quinsd Iuncxon bwiftc and cotuisiss fesub. pOacd in itW it does?

iUAIIY The obikW d a on- inysenm so be aaaliy . ois

CORECTESS The 2attW to ~~iI d" .,jtwatre sbendl AN __w v&i doe it Ctoinfr

!CRRCNES pcificatiort andll toB~ Aussin rquiremer. to Eu faqtuirmenth ?

MAINTAIN- The abluv of & sbaft sytweiam t0 be asit C~ffectd ls Willy 8 4 ID rGPer?ABILITY vimE ermn we dimicvead. ____________ r"

TESTAILITY The ablt fa alkiie a ~to be eaatV and Ho esy iys Atove*~TESABLIY crupghy NW.1 it performance ?

'PFLXIBILITY The ability of a so*#.wee systani to be easily mto~tdifieda ¶ ochng
to monewtf6 requirements o ~yi oCag

INTIEROPER- The WRYliof ci acft"WO Vas to elfectkvely exchange How a" a A to interiima
1ABLITY nono with ittder acllwae systems. vott another system ?

____ ___ ___ _ _ ___ ___ ____ ___ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___ ADAPTABILITY

PORTABILITY Th abaty Of a scifAee sysbm 10 be easiloy modifed lbs aMY 4 ItoI

t0 OPM-00 in mca ftin oe vironmient transport?

RESAILTY The abiliy of a solftar "astm or parts of a system Ho evy a 4I to Convert

ZESBLT touedi fKO a, pojos loIr ase in anoltherp

Source: Sizemore (1990), p. 1-4

Figure 8-3: Software Quality Factors

8-11

presents the eleven software quality factors he used; Figure 8-4 presents a

matrix representation of how these eleven software quality factors are

decomposed into more measurable subfactors; and Figure 8-5 presents the

definitions of each of the subfactors. We considered it important fci

completeness to assess whether the test and evaluation criteria and

attrihutes in our hierarchy (Table 2-I and Table 3-9) addressed the

software quality factors and subfactors used in Sizemore's study.

Table 8-1 links the test and evaluation attributes in our hierarchy to

Sizemore's software quality factors and subfactors. That is, for an, given

software quality subfactor, Table 8-1 identifies the appropriate test and

evaluation attributes in our hierarchy. For example, Table 8-1 indicates

the subfactor Consistency can be assessed in the hierarchy by examining (1)

the logical consistency of the knowledge base and (2) four system integra-

tion attributes: format consistency, consistency with data requirements,

documentation consistency, and the system's consistency with the identified

skill requirements of the users. This view takes a broad interpretation of

"consistency" as found by Sizemore. We suggest that much of the software

engineering literature interprets "consistency" much more narrowly,

especially by including consistency with skill levels of users.

As can be seen, Table 8-1 is a very long table. This occurs because

many of the quality subfactors measure more than one qualit', factor. For

example, as shown ir Figure 8-3, the Consistency subfactor measures

Correctness, Reliability, and Maintainability. In fact, six of the twenty-

one tubfactors measure more than one factor. In all caaes we have repeated

the subfactor to attribute linkages so that Table 8-1 provides the complete

factor to subfactor to attribute linkages for the reader's examination.

We want to make four principal points. First, all the attributes in

the hierarchy are linked to Sizemore's software quality subfactors. No

attribute in the hierarchy is left unaccounted for. However, in some

cases, the subfactor may need to be interpreted rather broadly to make the

linkage. For example, the Service attribute skill requirements refer to

the system's requiring an appropriate skill level from the user. •,-

interpret this to be an aspect of operability, in that the system cokll •,t,

0
8-12

Correctness

Reliability

Efficiency
Integrity " - - - l- r

Usability "L.-
Maintainability - --

Testability _

F l e x i b il ity- -
Portability _

Reusability
Interoperiability - -- _

Traceability (T)

Completeness (CM)

Consistency (CN)

Error Tolerance (ET)

Accuracy (A)

Structural Simplicity (SS)

Test Adequacy (TA)

Execution Efficiency (EE)

Storage Efficiency (SE)

Access Control (AC)

Access Auditability (P. k)

Communicativeness (C)

Operability (0)

Modularity (M)

Self-Descriptiveness (SD)

Documentation Adequacy (DA) 7
I;,strumentation (1) '

Expandability (E)

Machine Independence (MI) I Y -
Data Commonality (DC)

Comm- :cations Commonality (C)

Source: Sizemore (1990), p. 1-6

Figure 8-4: Factor to Sul'actor Decomposition Ii Matrix F..,a

8-13

0 ' kvCUh G 'I -LF OetCRIPT IIYNESS~

7T*e oft to v~vU t* ;,widucts
software dweviopnwt phase WriplI6TInstfl The Oft, 1 1 whc a sYsteM erOOMs ft i The 031an ID whisch Pogrsnr DOWL'ik e o
prolducts #W ptadS Wa, r h&%'% hr bAWs vtflded Ptjvr*rs wit, minimum sxacutd~i a eav ID~a ,vsru

COMPETEEGS DFItN' OCUMENTATION ADEOQJACY

The e4enl to whc asystern contains all ~ sGAeWX to AIAA a sviltfoi W:11na rI t IL wiT W~.6.0 aocx ombito
required oomporwa and each A4 :?1oae nlisnded turoctions wIM f'-nifu!!! .

oirpxxwm a fuity de,,eioped bor. of stiingi rmeurise ^xmrn;I mww *,-q

(CONSiSTENCY I (ACCEss CONTROL) INSTRUMENTATION

The extentf to which a ryilsm's code and The aesrt to *tich a srystemn provides Th eW w tar b inch a systm couim.ra
documuentation are un~forrn and tree Of rinchanintri 10 iction" access to So*5w(Gt5 uism7.ore or asevwirs to fcltat~e oxseculic

cotdtinand dats. rrorvtovvq debugging. and %sang,

(ERROR TOL!:AANCE'1 ;ACCESS AUDITABILITV EPADGIly

The extert to which a system continues The esmr5ton 1 whic a systm providese The exiarit frd~ a oyam can be easily
to perte cstec~ de~it racStuw~rwria to *m4 L4, eccewng of n-atd#,a soprwidei bodwowfnctiwons

or sof~we [ALI"~ sliiiiae. ard dit, dat alreioe caoeectty.

(ACCURPACY) (CM UIAIEE$lMACHINE INOEPENOENCE'

The einent to which a system is free from The as~ian to 00hod 4 system Promndes Thes eiteril 10 v^Wc* a system can, be madoe
error in caicutabonti and Output. ueIuflt. OL40A Slid an interface with ttie to execute in more than one hr*iald'a or

LUV-. software envwronmenii

, TEST AOEOUACYý0 OP E AAfILI~Y) DOATA COMMONALITY

The extenut to which tlst planning anid IThe asW ito whichi a system can, be The airm" to which a system uses strandard
executionr es"Sue thcrougil testing of the kuanded, WIMM204, 00culd. Andi ~rW-ti00 (v common dalt foir~m". typesv (eP'esen

'rystern toer.. And structuring

STRUCTURAL SIMPLICITY " MODULARITY' COMMUNICATIONS COMMCONA flf

The* stlen rs whic a. system 11 Wco','rsia
rl-" iiiuent to whichl a sryltem is tree fromr of doom" coffvxiw'f ouch mt7~ a chane76 Pieaids"No e~vc*ý a system use$ *,.N1ard
,xnmcicated cdai. logical "n contr~ol 00 Cied (toWxl"ti hias a flinIM41 I"rwl.. .A TyaicwmumnKAron protly.*r- 7

21.peliorrma1 tby a aingle componenti

Source: Sizemore (1990), p. 1-5

F~urr A,' In wr Quafjtý ~t~¶

8 -14

be executed if its skill requirements were excessive. A more narrow

interpretation could view operability as referring only to the system and

if it could be executed at all.

Second, all the attributes in the hierarchy can be used to measure two

subfactors: Traceability and Test Adequacy. Specifically, Traceability is

addressed by all the attributes because all the attributes in the hierarchy

can be used as a requirements tool, particularly in conjunction with Multi-

Attribute Utility Assessment (MAUA), as explained in Chapter 3. Similarly,

Test Adequacy is addressed because all the attributes need to be assessed

in order to test an expert system thoroughly. All the other quality

subfactors are linked to one or more, but not all, of the attributes in the

hierarchy.

Third, neither the Correctness nor Testability factors have the

"Accuracy" subfactor under it. Nor does Testability include the Communica-

tiveness subfactor, which is linked to many of the Usability attributes in

the hierarchy. These subfactors are probably omitted from the above

factors because these softwarc quality metrics were designed for conven-

tional software, not expert systems. We think these factors should include

the above subfactors for testing expert systems. However, in order to

maintain consistency with the software quality literature, we have not

included them or the corresponding attributes in Table 8-I.

Fourth, the only factors or subfactors that are unaccounted for in the

hierarchy are those, such as Modularity and Self-Descriptiveness and some

aspects of Maintainability, that relate to design and coding standards or

those, such as Access Auditability and Instrumentation, that relate to

built-in testability (which is also a design issue). As mentioned in

Chapter 3, we do not address design and coding standards. This said, if we

interpret these subfactors broadly, we can still find a linkage to the

hierarchy, and tnis is done in Table 8-I.

Figure 8-6 shows the linkage in the other direction. The attribute

hierarchy is shown with labels for subfactors next to each attribute.

8-15

utH ~*o -
~1 -

U ZxV

W<

uw
U,*

z~ z

w 0 rc

oz I,-

0 <LI 6LL$U

0 6-

0 SU IL

w 0
> & Z (rsi

0 z 2~4 9 -

WJ W 6

z~U z0w~
6

ZLJ ~ 0. ujz1 -V)I

0 0 0

>0

-LJ oo o 1

60 F-0

uj 0 r

~ J2
z

22 2

8-1

CHAPTER SUMMARY

This chapter relates the methods developed in this Handbook to other

approaches to software testing and evaluation. In particular, we show how

the attributes in our framework for testing and evaluating expert systems

relate to: verification and validation, static and dynamic testing, and

especially software qualit:, factors. We find that: 1) all attributes in

the framework relate to software quality subfactors; 2) all attributes in

the framework can be used to measure traceability and test adequacy; 3) the

only software quality factors or subfactors that are not in our framework

are those that relate to design and coding standards or to built-in

testability.

8-17

CHAPTER 9:

The last few years have seen an explosion of interest in testing

artificial intelligence and knowledge-based systems. As one indication, over

100 papers have appeared on the topic since 1987. However, there is still a

long way to go for the testing of artificial intelligence (AI) and knowledge-

based systems to reach the level of conventional software testing. This

chapter sketches the components of a test technology program, which could

substantially advance the science and practice of testing Al, and presents

some specific suggestions that could be pursued now.

TEST TECHNOLOGY PROGRAM

A test technology program would need to address both the "science" of

testing, by further developing the basis for testing, and the "engineering" of

testing, by developing specific methods and tools for testing. We identify

six specific items.

i. Assess and codify the state-of-the-art in testing. The AI testing
community needs to continue its efforts to get its arms around all
the diverse AI testing activities. This requires a comparison and
contrast of activities (a) within a particular activity area
(e.g., various static testing approaches), and (b) across areas
(e.g., static testing vs. dynamic testing vs. use of experts vs.
experimencs, ecc.). we can easily imagine task forces within and
across uctivity areas, wi:ti _e resvlt heing a major reference
work In t-e tfelc L•r y.. .come.

2. Develop AI testing laboratories. There need to be empirical
evaluations of alternative testing approaches (and products)
within and across activity areas, as well as of completed expert
systems and LxYert _,'ste:_- h'el1ls in order to assess their adequa-
c ". -.... ' , overnment or commercial labora-
tories (with no vesced js,-ere -ts, e.g., not at product vendors)
whose mission is to perform such empirical evaluations. It may be
most cost-efficient to have different laboratories specialize in
different areas, although this may be premature at this point.

3, Package Al testing approaches and products for Army personnel. A
significant effort is required to transfer Al testing technology
to Army personnel, and that effort needs to be managed carefully
since items I and 2 above have yet to be performed. Elements of
this iihclude a tr~aitig p:ogga:x with -urses and a place where

9-1

testers can get hands-on experience, computerized support, and
texts.

4. Direct efforts toward assessing the value of integrating Al
testing into the development process. It is often argued that
such integration will result in better A! systems and reduced
development costs, but we are not aware of any empirical studies
testing this hypothesis. This could be the first step of a larger
project to get testers involved earlier in the development process
to ensure that things such as requirements documents are produced
to aid in testing. Managers have to be shown that this involve-
ment is worthwhile, however.

5. Direct efforts toward assessing the relative effect of knowledge
elicitation techniques, domain experts, knowledge engineers,
representation schemes, and problem domains on knowledge-base
quality. It seems quite appropriate for the AI testing community
to evaluate the adequacy of the methods that go into building an
expert system, not just the finished products (i.e., systems).
This would be a major undertaking but especially important if Al
is here to stay (e.g., see Adelman, 1989). This would also
include the development of testing techniques for "funny logics"
(4-valued, non-monotonic, possible-worlds, probabilistic) where
appropriate tests do not always exist. Present techniques are
focused primarily on rule-based systems (possibly with extensions
to frames) and techniques may be needed for other types of sys-
tems.

6. Develop resting tools. The five items above are directed at the
"science" of testing Al. This item is directed at the "engineer-
ing." Tools are needed that get existing methods into the hands
of testers. These include:

static knowledge-based testing tools-for rule-based logics,
frame-based logics, and other logics;

a "requirements" generator-an automated system that will
help a tester generate a requirements document from an
examinati6n of the system;

benchmarks and other testing tools for shells and inference
engines;

simple dynamic testing tools (e.g., to keep track of what is
going on during the running of the system)-again available
for purchase and use;

comprehensive tools-such as extension, of the multi-
attribute utility analysis tool;

integrative tools to tie other tools together.

9-2

SPECIFIC ACTIONS

The following are some of the items that could be pursued immediately to

advance the state of practice of testing Al.

1. Develop an anthology on testing Al. Enough articles have been
produced on the subject that a set of reprints on testing AI and
expert systems, possibly including a few new articles, could be
collected and published as an anthology. This could be done
quickly and at low cost, yet provide a useful volume for testers
and significant recognition of EPG's efforts and support. At some
point, the anthology could be transferred to an electronic medium
such as optical disc storage, and a library aid could be devel-
oped.

2. Develop an automated static-tester using di-graph techniques.
There is a pressing need for static software testers for knowledge
bases. A promising approach is to develop software that will
represent a knowledge base in a directed graph (di-graph). "'eural
network techniques can then be applied to identify and locate
logical faults in the knowledge (including higher-order faults
such as multiple link loops).

3. Develop computerized support for calculating d*, B*. Chapter 5
presents a method for assessing the predictive accuracy of a
knowledge base and defines the parameters d* and B*. Computer
programs could be developed for designing tests to collect data
for d* and B* (including determining sample sizes). Additionally,
such a program could automate statistical calculations involved
with d* and B*, automate other aspects of d* and B* calculations
(e.g., calculate increase in accuracy possible from the expert
system), and automat" 3upport to interpret results of statistical
tests.

4. Deline r2 ' p-eg,-'' 'r. rVerent the MAUl hierarchy. As part
of this ptoiect, w.c deteloptw prutotype software for implementing
the MAU hierarchy described in Chapter 3. To be most useful to a
tester, this prototype software should be further developed to
provide:

an automated teatUre Lo help a tester build an alternative
asse-ýSLeIkuI •L~ it

* context-speclfic advice of the type pr-icnted in Chapter 7:

* human-engineered interfaces

built to commercial (or other) standards,

more context-specific help,

. built-in tutorials on related topics;

9-3

ties to other programs, if available or developed (especial-
ly d* and B* statistical analyses and di-graph analyzer).

5. Extend the compendium of lessons learned. Also as part of this
project (Volume 2), we compiled a compendium of lessons learned
from testing Al systems in the Army. This is a useful assessment
of current practice that can serve to educate testers and to
identify areas where additional work is needed. Specific elements
of the extended compendium include: surveying new systems devel-
opments, extending the coverage of the survey to include addition-
al organizations and systems, and conducting in-depth follow ups
on systems reviewed in the existing compendium. The compendium
could be produced in both paper and hypertext media.

6. Extend "testbed" activities. The methods described in this
Handbook have not been applied extensively. The state of practice
can advance from applying these test methods in more depth and to
more systems. Furthermore, it is possible to build an automated
system to collect a historical record of testing including:
project and program characterization, testing techniques used,
assessment of how well the techniques worked, cost of testing,
impact of testing on the schedule, impact of testing on the
quality of the system. This history could then form the basis for
a knowledge base of testing.

7. Develop an automated questionnaire generator. We propose two
questionnaires in this Handbook that will help a tester assess the
usability of an expert system. Further work in this area might
automate the generation of a tailored questionnaire: the tester
might input characteristics of the test environment and the system
being tested, and a computer program would generate a complete
questionnaire. This might then be generalized and linked t. other
material, such as a regulation or a Mil Std.

8. Develop methods and tools to validate confidence weights and
uncertainty factors. Many expert systems utilize a formal system
to represent confidence or uncertainty (e.g., Bayesian, fuzzy set,
or Dempster-Shafer). However, many expert system developers do
not understand confidence weights or uncertainty factors (e.g.,
one survey found many cases of probability assessments outside the
range of 0 to 1). Tools could be developed to test whether the
knowledge base violates the principles of the confidence or
uncertainty handling system that is used.

9. Interface with software quality factors. Computer scientists
continue to develop software quality factors for standard proce-
dural software. As shown in Chapter 8, there is a relationship
between these quality factors and attributes for testing expert
systems. This relationship should be explored further with a view
toward advancing both approaches for characterizing good software.

9-4

* CHAPTER SUMMARY

The state-of-the-art in testing expert systems has progressed greatly in

the last three or four years from a topic of interest to only a few research-

ers to a field of application involving many software developers and testers.

However, much work is still needed for testing to become a routine part of the

expert system development cycle.

This chapter describes a test technology program of acti ities needed to

advance both the science and the engineering of expert system testing. All of

these activities could be started today, and all will be needed if testing is

to play its proper role in expert system applications. This chapter also

lists nine immediate actions that could be taken to advance the state of

expert system testing generally and the methods described in this Handbook

specifically.

9-5

REFERENCES

AAAI (1988). Proceedings of First AAAI Workshop on Validation and Testing of
Knowledge-Based Systems.

Adelman, L. (1982). "Involving Users in the Design of Decision-Analytic Aids:
The Principal Factor in Successful Implementation." Journal of the Operation-
al Research Society, 33, 333-342.

Adelman, L. (1984). "Real-Time Computer Support for Decision Analysis in a
Group Setting: Another Class of Decision Support Systems." Interfaces, 14,
75-83.

Adelman, L. (1987). "Supporting Option Generation." Large Scale Systems, 13,
83-91.

Adelman, L. (1989). "Measurement Issues in Knowledge Engineering." IEEE
Transactions on Systems, Man, and Cybernetics, SMC-19, 483-488.

Adelman, L. (1990a). Integrating Evaluation Methods Into the DSS Development
Process. Information and Decision Technologies.

Adelman, L. (1990b). Evaluating Decision Support Systems. Wellesley, MA:
QED Information Sciences.

Adelman, L. and M.L. Donnell (1986). "Evaluating Decision Support Systems: A
General Framework and Case Study." In S.J. Andriole (Ed.), Microcomputer
Decision Support Systems: Design, Implementation, and Evaluation. Wellesley,
MA: QED Information Sciences.

Adelman, L., M.L. Donnell, R.H. Phelps, and J.F. Patterson (1982). "An
Iterative Bayesian Decision Aid: Toward Improving the User-Aid and User-
Organization Interfaces." IEEE Transactions on Systems, Man, and Cybernetics,
SMC-12, 733-742.

Adelman, L. and K. GaLes (1983,. Evaluation of the Duplex Army Radio/Radar
Targeting Aid (DART) (Report 83-84). New Hartford, NY: PAR Technology
Corporation.

Adelman, L., F.W. Rook, and P.E. Lehner (1985). "User and R&D Specialist
Evaluation of Decision Support Systems: Development of a Questionnaire and
Empirical Results." IEEE Transactions on Systems, Man, and Cybernetics, SMC-
15, 334-342.

Adelman, L., P.J. Sticha, and M.L. Donnell (1984). "The Role of Task Proper-
ti.es in Determining the Relative Effectiveness of Multiattrlbute Weighting
Techniques." Organizational Behavior and Human Performance, 33, 243-262.

Adelman, L., P.J. Sticha, and M.L. Donnell (1986). "An experimental Inves-
tigation of the relative effectiveness of two techniques for structuring
multi-attributed hierarchies." Organizational Behavior and Human Decision
Processes, 37, 188-196.

R-I

Adelman, L. and J.W. Ulvila (in press). "Evaluating Expert System Technol-
ogy." In S.J. Andriole and S.M. Halpin (Eds.), Information Technology For
Command and Control. New York: IEEE Press.

Andriole, S.J. (1989). Handbook for the Design, Development, Evaluation, and
Application of Interactive Military Decision Support Systems. Princeton, NJ:
Petrocelli.

Bahill, A.T., P.N. Harris, and E. Senn (1988). "Lessons Learned Building
Expert Systems." Al Expert, 3, 36-45.

Bailey, D.E. (1971). Probability and Statistics: Models for Research. New
York: Wiley & Sons.

Bailey, J.E., and S.W. Pearson (1983). "Development of a Tool for Measuring
and Analyzing computer User Satisfaction." Management Science, 29, 530-545.

Baroudi, J.J. and W.J. Orlikowski (1988). "The Problem of Statistical Power
in MIS Research." MIS Quarterly, 87-106.

Barth, S., D. Sobik, and H. Coyle (1983). The Users Guide for the Duplex Army
Radio/Radar Targeting Aid (DART). New Hartford, NY: PAR Technology Corpora-
tion.

Beizer, B. (1984). Software System Tisting and Quality Assurance. New York:
Van Nostrand Reinhold.

Bellman, K.L. and E.O. Walter (1988). "Analyzing and Correcting Knowledge-
Based Systems Requires Explicit Models." Proceedings of the AAAI-88 Workshop
on Validation and Testing Knowledge-Based Systems. St. Paul, MN: August 20,
1988.

Bourgeois, L.J. and K.M. Eisenhardt (1988). "Strategic Decision Processes in
High Velocity Environments: Four Cases in the Microcomputer Industry."
Management Science, 34, 816-835.

Brier, G. (1950). "Verification of Forecasts Expressed in Terms of Probabil-
ity." Monthly Weather Review, 75, 1-3.

Brown, R.V., A.S. Kahr, and C.R. Peterson (1974). Decision Analysis for the
Manager. NY: Hot, Rinehart & Winston.

Buede, D.M., and L. Adelman (1987). Decision Support Systems: Design, Use,
and Evaluation. Coursebook for seminar sponsored by the U.S. Army Logistics
Management Center, Fort Lee, VA.

Campbell, D.T. (1984). "Foreword." In R.K. Yin (Ed.), Case Study Research:
Design and Methods. Beverly Hills: Sage Publications.

Campbell, D.T. and D.W. Fiske (1959). "Convergent and discriminant validation
by the multitrait-multimethod matrix." Psychological Bulletin, 56, 81-105.

Campbell, D.T. and J.C. Stanley (1966). Experimental and Quasi-Experimental
Designs for Research. Chicago, IL: Rand McNally.

R-2

Casey, J. (1989). "Picking the Right Expert System Application." AT Expert,
4(9), 44-47.

Cats-Baril, W.L. and G.P. Huber (1987). "Decision Support Systems for Ill-
Structured Problems: An Empirical Study." Decision Sciences, 18, 350-372.

Chandrasekaran, B. (1983). "On Evaluating Al Systems for Medical Diagnosis."
Al Magazine, 4, 34-37.

Chapnick, P. (1988). "When We Look Back." AT Expert, 3(12), 5-6.

Cholawsky, E.M. (1988). "Beating the Prototype Blues." Al Expert, 3(12), 42-
49.

Cochran, W.G. and G.M. Cox (1957). Experimental Designs (2nd edition). New
York: Wiley.

Cohen, J. (1965). "Some Statistical Issues in Psychological Research." In
B.B. Woleman (Ed.), Handbook of Clinical Psychology. NY: McGraw-Hill.

Cohen, J. (1977). Statistical Power Analysis for the Behavioral Sciences
(revised edition). NY: Academic Press.

Cohen, M.S., and A.N.S. Freeling (1981). The Impact of Information on
Decisions: Command and Control System Evaluation (Technical Report 81-1).
Falls Church, VA: Decision Science Consortium, Inc.

Constantine, M.M. and J.W. Ulvila (1990). "Testing Knowledge-Based Systems:
The State of Practice and Suggestions for Improvement." Expert Systems with
Applications, 1, 237-248.

Cook, T.D. and D.T. Campbell (1979). Quasi-Experimentation: Design and
Analysis Issues for Field Settings, Chicago, IL: Rand McNally.

Cuibert, C. and R.T. Savely (1988). "Expert System Verification and Valida-
Utin." Proceedinrs of AAAI4-88 Workliop on Validation and Testing Knowledge-
Besed Systems St f.oui, T4. Aug.> !?,

Davis, X. (i 9 89). -Expert Systems: How Far Can They Go." Al Magazine, 10,
65-77.

Dawes, R.M. and B. Corrigan (1974). "Linear Models in Decision Making."
Psychological BulietiL, 9i, 95 lit.

Delbecq, A.L., A.H. Van de Ven, and D R. Gustafson (1975). Group Techniques
for Program Planning: A Guide to Nominal Group and Delphi Processes.
Glenview, IL: Scott, Foresman, and Co

Dehlllo, R.A., W.M. McCracken, R.J. Martin, and J.F. Passafiume (1987).
Software Testing and Evaluation. Menlo Park, CA: The Benjamin/Cummings
Publishing Co.. Inc.

DOD-STD-1679A: Software Development (Section 5.3, Programming Standards).
February 1983.

R-3

DOD-STD-2167: Defense System Software Development (Section 30.3, Detailed
Requirements section of General Design and Coding Standards). 4 June 1985.

Ebert, R.J. and T.E. Kruse (1978). "Bootstrapping the Security Analyst."
Journal of Applied Psychology, 63, 110-119.

Edwards, W. (1977). "Use of Multiattribute Utility Measurement For Social
Decisions." In D.E. Bell, R.L. Keeney, and H. Raiffa (Eds.), Conflicting
Objectives in Decisions. New York: Wiley.

Efron, B. (1982). The Bootstrap, the Jackknife and Other Resampling Plans.
Philadelphia, PA: Society for Industrial and Applied Mathematics.

Eils, L.C. and R.S. John (1980). "A Criterion Validation of Multi-Attribute
Utility Analysis and of Group Communication Strategy." Organizational
Behavior and Human Performance, 25, 268-288.

Einhorn, H.J. and R.M. Hogarth (1975). "Unit Weighting Schemes of Decision
Making." Organizational Behavior and Human Performance, 13, 171-192.

Einhorn, H.J. and W. McCoach (1977). "A Simple Multi-Attribute Procedure for
Evaluation." Behavioral Science, 22, 270-282.

Eliot, L.B. (1989). "Mass Market Applications: They're Here." Al Expert,
4(12), 9-14.

Fairley, R.E. (1985). Scftware Engineering Concepts. New York: McGraw-Hill.

Forsythe, D. and B. Buchanan (1989). "An Empirical Study of Knowledge
Elicitation: Some Pitfalls and Suggestions." IEEE Transactions on Systems,
Man, and Cybernetics, SMC-19, 435-442.

Franklin, W.R., R. Bansal, E. Gilbert, and G. Shroff (1988). "Debugging and
Tracing Expert Systems." Intornational Hawaii Conference on System Sciences.

Gaschnig, J., P. Klahr, H. Pople, E. Shortliffe, and A. Terry (1983).
"Evaluation of Expert Systems: Issues and Case Studies." In F. Hayes-Roth,
D.A. Waterman, and D.B. Lenat (Eds.), Building Expert Systems. Reading, MA:
Addison-Wesley.

Gelperin, D. and B. Hetzel (1988). "The Growth of Software Testing."
Communications of the ACM, 31, 687-695.

Gilbert, E. (1989). "Static Analysis Tools for Expert Systems." Proceedings
of Test Technology Symposium II.

Goldberg, L.R. (1970). "Man Versus Model of Man: A Rationale, Plus Some
Evidence, for a Method of Improving Clinical Inference." Psychological
Bulletin, 73, 422-432.

Gould, J.D. and C. Lewis (1985). "Designing for Usability: Key Prirlciple,
and What Designers Think." Communications of the ACM, 28, 300-311.

Green, D., and 0. Swets, 0. (1966). Signal Detection Theory and Psychologies.
NY: John Wiley.

R-4

* Gullikser H. (1950). Theory of Mental Tests. NY: Wiley and Sons.

Hamlet, t. 41988). "'5p .ci aI Sec*i<-. . T_.wm ' 'ticat ions of
the ACM, 31, 662-667.

Hamnunnd, K.R. (1948). "Subject and Object Shmpling: A Note." Psychological
Bulletin, 45, 330-533.

Hammond, K.R., R.M. Hamm, and J. GrassLa (1986). "Generalizing Over Condi-
tions By Combining the Multitrait-Multimcthod Matrix and the Representative
Design of Experiments." Psychological Bulletin, 100, 257-269.

Hammond, K.R., R.M. hamm, J. Grassia, and T. Pearson (1987). "Direct Com-
parison of the Relative Efficacy of intvi ":7e and Analytical Cognition in
Expert Judgment. IELZ Transact..ons on .5ystems, Man, and Cybernetics, SMC-17,
753-770.

Hammond, K.R., T.R. Stewart, 13. Brehmer, and D.O. Steinmann (1975). "Social
Judgment Theory." M.F. Kaplan and S. Schwartz (Eds.), Human Judgment and
Decision Processes. New York: Academic Press.

Harmon, P., R. Maus, and W. Morrissey (1988). Exper, Systems Tools and
Applications. New York: John Wiley & Sons.

Harrison, P.R. (1989). "Testing and Evaluation of Knowledge-Based Systems."
In J. Liebowitz and D.A. De Salvo (Eds.), Structuring Expert Systems: Domain,
Design, and Development. Englewood Cliffs, NJ: Yourdon Press.

Hays, W. (1972). Statistics for the Social Sciences (2nd Edition). NY:
Holt, Rinehart and Winston.

Hayes, P.J. (1981). "The Logic of Frames." B.L. Webber and N.J. Nilsson
(Eds.), Readings In Artificial Intelligence. Palo Alto, CA: Tioga, 451-458.

',-z D. (II87). "An Empiiciai Cu•;Larlson of Three Inference Methods."
r. .~,..i. 47 &v'vrt;ftir. Arrifici i Intelligence,

1 •b- i69 .

Ietzel, w. k19E4). Zi.. omplete uuiae to Software Testing. Wellesley, MA:
QED Information Science!s, Inc.

Hice, G.F.. W.S, Turg:. r. and L.F. Cashwell (1978). System Development

Hoffman. P.J. (1,960) 'The Parar.acr.,: ¶{ %rresentation of Human Judgmeitt."
:sy~oio~cal uletin, _)i/ 11.6,A31

Hoffman, P.J., P. Slovic, and L G. Rncer (1968). '-An ,nalvsis-of-Variance
Model for the Assessment of Configurfi Cue Utilization in "A "nical Judgment.
Psychological Bulletin, 69, 338-349.

Ho-arth, R.M. kI-98i). Juagrnn:ý and Choicc. NY: Wiley-Interscience

Huber, G.P. (191%). ilanage1iaL DT' n .•io ,ia0ing -lenview TL: Scott,
Foresman, & or-',.

Huber, G.P. (1986). "The Decision-Making Paradigm of Organizational Design."
Management Science, 32, 572-589.

Hurst Jr., E.G., D.N. Ness, T.J. Gambino, and T.H. Johnson (1983). "Growing
DSS: A Flexible, Evolutionary Approach." In J.L. Bennett (Ed.), Building
Decision St-pporc Systems. Reading, MA: Addison-Wesley Publishing Company.

IJCAI (1989). Preliminary Proceedings of IJCAI-89 Workshop on Verification,
Validation, and Testing of Knowledge Based Systems.

JCMPOINST 8020.1: Independent S.oftware Nuclear Safety Analysis kChange 2,
Appendix F, Section 3.6 (3), Specification and DesIgn Audit aiC Anaiysis) (3
March 1984).

Kahneman, D., P. Slovic, and A. Tversky (Eds.) (1982). Judgment under
Uncertainty: Heuristics and Biases. NY: Cambridge University Press.

Kahneman, D. and A. Tversky (1984). "Choices, Values, and Frames." American
Psychologist, 39, 341-350.

Kalagnanam, J., and M. Henrion (1988). "A Comparison of Decision Analysis and
Expert Rules for Sequential Diagnosis." Proceedings of the Fourth Workshop on
Uncertainty in Artificial Intelligence, 205-212.

Kang, Y., and A.T. Bahill (February 1990). "A Tool for Detecting Expert
System Errors." Al Expert, 5(2), 46-51.

Kaplan, B. and D. Duchon (1988). "Combining Qualitative and Quantitative 0
Methods in Information Systems Research: A Case Study." MIS Quarterly, 12,
571-586.

Keeney, R.L. n'id H. Raiffa (1976). Decisions with Multiple Objectives. New
York: Wiley.

Keim, R.T. and R. Janaro (1982). "Cost/Benefit Analysis of MIS." Journal of
Systems Management, September 1982, 20-25.

Kelly, CW. (1979). Program Completion Report: Advanced Decision Technology
Program (1972-1979) (TR 79-3-93). McLean, VA: Decisions and Designs, Inc.

Keyes, J. (1989). "The Citibank Pension Expert." Al Expert, 4(6), 61-65.

Kirk, D.B. and A.E. Murray (1988). Verification and Validation of Expert
Systems for Nuclear Power Applications. McLean, VA: Science Applications
International Corporation.

Klein, G.A. and C. Brezovic (1988). "Evaluation of Expert Systems." In S.J.
Andriole and G.W. Hopple (Eds.), Defense Applications of AT. Lexington Books.

Kraemer, H.C. and S. Thiemann (1987). How Many Subjects?: Statistical Power
Analysis in Research. Beverly Hills. CA: Sage Publications.

Lay, P.M.W. (1985). "Beware of the Cost/Benefit Model for iS Project Evaiua-
cion." Journal of Systems Management, June 1985, 30-35.

R-6

.0 Leddo, J.M., and M.S. Cohen (1987). "A Cognitive Science Approach to Elicita-

tion of Expert Knowledge. Cr. ~e. .. rhe 194 reztor: -f

Corporation.

Lee, A.S. (1989). "A Scientific Methodology for MIS Case Studies." mrS
Quarterly, 13, 33-50.

Lehner, P.E. (1989). "Toward an Empirical Approach to Evaluating the Knowledge
Base of an Expert System." IEEE Transactions on Systems, Man, and Cybernetics,
SMC-19, 658-662.

Lehner, PoE. and L. Adelman (in press). "Behavioral Decision Theory and Its
Implications for Knowledge Engineering." Knowledg- Engineering Review.

Lehner, P.E., T.M. Mullin, and M.S. Cohen (1989). "When Should a Decision Maker
Ignore the Advice of a Decision Aid." Proceedings of the 1989 Workshop on
Uncertainty in Artificial Intelligence.

Lehner, P.E. and J.W. Ulvila (1989). A Note on the Application of Classical
Statistics to Evaluating the Knowledge Base of an Expert System. Reston, VA:
Decision Science Consortium, Inc.

Lehuer, P.E., and D.A. Zirk (February 1987). "Cognitive Factors in User/Expert
System Interaction. Human Factors, 29(1), 97-109.

Levi, K, (1985). "A Signal Detection Framework for the Evaluation of Proba-
bilistic Forecasts, ' Organizational Behavior and Human Performance, 36, 143-166.

Levi, K. (1989). "Expert Systems Should be More Accurate than Human Experts:
Evaluation Procedures from Human Judgment and Decisionmaking." IEEE Transactions
on Systems, Man, and Cybernetics, SMC-19, 647-657.

Libby, R. and B.L. Lewis (1977). "Human Information Processing Research in
':'~,rtti?." Accounting, Organizacions, and Society, 21, 245-268.

C... : L•-'4lA Exper: Systems." Expert

Likert, R. (1932). "A Technique for the Measurement of Attitudes. Arch.
Psychol., 140.

Marcot, a. .(9Li. "...ý *.i.. 'I1ge Fase." Al Expert, 2, 42-47,

Markus, M.L. (1983) "Power, Poliri,- a;id MIS Implementation." Communications
of the ACM, 26, 430-444,

Markus, M.L. (1984). Systems in Organizations: Bugs and Features. Marshfield,
KMk. Pitman Publishing, Inc.

Mazen, A., L. Graf, C. Kellogg, and M. Hermmasi (1987). "Statistical Power in
Contemporary Management Research." Academy of Management Journal, 30, 369-380.

0

IIIII a a in Hi m I mR .m

McCain, L.J. and R. McCleary (1979). "The Statistical Analysis of the Simple
Interrupted Time-Series Quasi-Experiment." In T.D. Cook and D.T. Campbell
(Eds.), Quasi-Experimentation: Design and Analysis Issues for Field Settings.
Chicago, IL: Rand McNally.

McCall, J. and M. Matsumoto (1980). Sofcwgre Quality Metrics Enhancement:
Volumes I-I1 (RADC-TR-80-109).

Medlin, S.M., and L. Adelman (1989). "Automated cost-.'Dnefit analysis: A
powerful decision support tool for HRD managers." Proceedings of the Tweltrh
National Conference on Teaching Public Administration, Charlottesville, VA:
March 14-16, 377-392.

MIL-STD-1679: Weapon System Software Development (Section 5.3, Programming
Standards). 1 Dec. 1978.

Mortimer, H. (1988). The Logic of Induction (English edition). Chicester,
England: Ellis Horwood Limited.

Nazareth, D.L. (1988). An Analysis of Techniques for terification of Logical
Correctness in Rule-Based Systems (Ph.D. Dissertation). Case Western Reserve
University.
Nazareth, D.L. (1989). "Issues in the Verification of Knowledge in Rule Based

Systems." International Journal of Man-Machine Studies, 30, 255-271.

Newquist, H.P. Ill (1988). "Ta)es from the Hearth of AT." Al ExeFt, 3(12),
61-63.

Nguyen, T.A., W.A. Perkins, T.J. Laffey, and D. Pecora (1987). "Knowledge
Base Verification." Al Magazine, 8, 69-75.

Nilsson, N. (1980). Principles of Artificial Intelligence. Morgan Kaufmann.

Noble, D. (1989). "Schema-Based Knowledge Elicitation for Planning and
Situation Assessment Aids." IEEE Transactions on Systems, Man, and Cyber-
netics, SIC-19, 473-482.

O'Connor, M.F. (1989). "Planning for Integrated System Evaluation: An
Application to SDI." In S.E. Johnson and A.H. Levis (Eds.), Science of
Command and Control: Coping With Complexity (Part I1). Fairfax, VA: AFCEA
International Press.

O'Connor, M.F. and W. Edwards (1976). On Using Scenarios in the Evaluation of
Complex Alternatives (DDI/DT/TR-76-17). McLean, VA: Decisions and Designs,
Inc.

O'Keefe, R.M., 0. Balci, and E.P. Smith (1987). "Validating Expert System
Performance." IEEE Expert, 2, 81-90.

O'Keefe, R.M. and O'Leary, D.E. (1990). The Verification and Validatiou
Expert Systems Aithors' mimeo.

Pitz, G.F. and J. McKillip (1984). Decision Analysis for Program Managers.
Beverly Hills, CA: Sage Publications.

R- b

* Press. L. (1989). "Expert System Benchmarks." !EEF Expert. 4, 37-44.

Pressman, R.S. AI'd7). Lare . .rh. New

York: McGraw-Hill.

Reichardt, C.S, (1979). "The Statistical Analysis of Data from Nonequivalent
Group Designs." In T.D. Cook and D.T. Campbell (Eds.). Quasi-Experimenta-
tion: Design and Analysis Issues for Field Settings. Chicago,IL: Rand
McNally.

Riedel, S.L. and G.F. Pitz (1986). "Utilization-Oriented Evaluation of
Decision Support Systems." IEEE Transactions on Systems, Man. and Cyber-
netics, SMC-16, 980-996.

Rockmore, A..J., L. Hemphill, R.A. Riewenschneider, M.L. Donnell, and K. Gates
(1982). Decision Aids for Target Aggregation: Technology Review and Decision
Aid Selection (PAR Report #82-32). New Hartford, New York: PAR Technology
Corporation.

Rook, F.W. and J.W. Croghan (1989). "The Formulation of Knowledge Acquisition
Methods: A Systems Engineering Conceptual Framework." IEEE Transactions on
Systems, Man, and Cybernetics, SMC-19, 586-597.

Rushby, J. (1988). Quality Measures and Assurance for Al Software (NASA
Contractor Report 4187). Washington, DC: National Aeronautics and Space
Administration (Code NTT-4).

Saaty, T.L. (1980). The Analytic Hierarchy Process. New York: McGraw-Hill.

Sage, A.P. (1986). "An Overview of Contemporary Issues in the Design and
Development of Microcomputer Decision Support Systems." In S.J. Andriole
(Ed.), Microcomputer Decision Support Systems: Design, Implementation, and
Evaluation. Wellesley, MA: QED Information Sciences.

.i 4 C -1 :J7te l (191;0). Evaluation of Two DD: Decision Aids
"C', .loped r':- (Dc,--ment No, 33/>5T-v114-RU°00). Falls Church, VA:

Deter:7 r, "- 1,v• • s..

Schein, E.11. (1970). oLganizational Psychology. Englewood Cliffs, NJ:
Prentice-Hall, 1970.

Shafer, G. (1976). A Mathematical Theory of Evidence. Princeton, NJ:
Princeton Uitversit- ,

Shank, R.C. anO R P. Abelson '1977'. Sr-.rtr:, Plpns. Goals, and Understand-
in. An lnquir.r into Human KnovJedge StrlictzreT. Htllsda]. NJ: Lawrence
Erlbaum Associates.

Sharda, R., S.1. Barr, and J.C. McDonnell (1988). "Decision Support System
Effectiveresr" A Review and an Empirical Test." Management Science, 34, 139-
1-,9

Sheppard, J. (November 1989). "An Approach to Verifying Expert System Rule
Bases." Proceedings of the 1989 international Conference on Systems, Man, and
Cybernetics.

Shycon, H.N. (1977). "All Around the Model-Perspective on MS Applications."
Interfaces, 7, 40-43.

Simon, H... (1960). The Ncw Science of Management Decisions. New York:
Harper & Row.

Sizemore, N.L. (1990), "Test Technologies for Knowledge-Based Systems: A
Summary." Proceedings of Test Technology Symposium LIT Aberdeen. MO: U.S.
Army Test and Evaluation Command.

Slagle, J.R. and M.R. Wick (1988). "A Method for Evaluation Candidate Expert
System Applications." Al Magazine, 9, 44-53.

Smith, D.L. (1988). "Implementing Real World Expert Systems." Al Expert,
3(12), 51-57.

Software Quality Engineering Handbook (1984). Draft Technical Bulletin TB-18-
102-2.

Spetzler, C.S. and C.A.S. Stael von Holstein, (1975). "Probability Encoding
in Decision Analysis." Management Science, 22, 340-358.

Stachowitz, R.A., C.L. Chang, and J.B. Combs (1988). "Research on Validation
of Knowledge-Based Systems." Proceedings of the AAAI-88 Workshop on Valida-
tion and Testing Knowledge-Based Systems. St. Paul, MN: Aug. 20, 1988.

Stichowitz, R.A , and JRB. Comb- (138?). "Validaticr of Expert Syv;Leus."
Proceedings, Hawaii International Conference on System Sciences, Kong, HI.

Stewart, T.R., W.R. Moninger, J. Grassia, R.H. Brady, and F.H. Merrem (1988).
Analysis of Expert Judgment and Skill in a Hail Forecasting Experiment.
Boulder, CO: Center for Research on Judgment and Policy at the University of
Colorado.

Tong, R.M., N.D. Newman, G. Berg-Cross, and F. Rook, (1987). Performance
Evaluation of Artificial Intelligence Systems. Mountain View, CA: Advanced
Decision Systems.

Ulvila, J.W. and Chinnis, J.0., Jr. (in press). Decision analysis for R&D
resource management. In D.F. Kocaoglu (Ed.), Management of R&D and engineer-
ing.

Ulvila, J.W., P.E. Lehner, T.A. Bresnick, J.0. Chinnis, Jr., and J.D.E. Gumula
(1987). Testing and Evaluating C31 Systems That Employ Artificial Intel-
ligence. Reston, VA: Decision Science Consortium, Inc.

von Winterfeldt, D. and W. Edwards (1986). Decision Analysis and Behavioral
Research. NY: Cambridge University Press.

Watson, S. and D.M. Buede (1987). Decision Synthesis: The Principles and
Practice of Decision Analysis. Cambridge, England: Canri,)dge UnrvtL_.,y
Press.
Veiss, J.J. and G.W. Zwahlen (.982). "The Structured Decision Conference. A

(.ase Study." Hospit-il and liea1O! Services Administratio. n .. u7

R-10

Weitzel, J.R. and L. Kerschberg (1989). "A System Fevelopment Methodology for
Knowledge-Based Systems." IEEE Transacc~ins on a-.• nnd Cy'er-ecics,
SMC-i9, b98-605.

Winkler, R. (1972). Introduction to Bayesian Inference and Decision. NY:

Hut, Rinehart and Winston.

Wohl, J.0. (1981). "Force Management Decision Requirements for Air Force
Tactical Command and Control." IEEE Transactions on Systems, Man, and
Cybernetics, SMC-ll, 618-639.

Wolfgram, D.D., T.J. Dear, and C.S. Calbraith (1987). Expert Systems for the
Technical Professional. New York: Wiley.

Yin, R.K. (1984). tse SLudy Research: Design and Met!:ods. Beverly Hills:
Sage Publications.

Yu, V.L., L.M. Fagan, S.M. Wraith, W.J. Clancey, A.C. Scott, J.F. Hanigan,
R.L. Blum, B.G. Buchanan, and S.N. Cohen (1979). "Antimicrobial Selection by
a Computer: A Blinded Evaluation by Infectious Disease Experts." Journal of
the American Medical Association, 242, 1279-1282.

Zimmerman, H.J. and P. Zysno (1980). "Latent Connectives in Human Decision
Making." Fuzzy Sets and Systems, 4, 37-51.

S

APPENDIX: QUESTIONNAIRES

This appendix contains generic questionnaires that can be usec4 h' a

tester to elicit judgments from subjects on the performance and usability of

an expert system. These questionnaires have been designed using the guide-

lines described in Chapter 3, and are directed toward assessing attributes in

the MAU framework for testing and evaluating expert systems that is described

in Chapter 3, using the 100-point scale that is also described in Chapter 3.

Two types of questionnaire are included. The first uses a Likert-type

scale for responses to agreement or disagreement with statements. At least

two questions, which appear in different places and are phrased differently,

are included for each attribute. These responses must be converted to utility

scores by the tester. We expect that a subject should need 15 to 30 minutes

to complete this questionnaire. Figure A-1 shows the relationship bptween the

questions and the hierarchy of attributes. The second questionnaire asks the

subject to make judgments on a utility scale for fifteen attributes. This

scale is described, and instructions are also given on ho• to fill out the

questionnaire. Subjects will probably need more time to complete this

questionnaire. If resources permit, we recommend the use of both question-

naires.

Both questionnaires should be customized for each expert system being

This c.i; be done by replacing the following generic phrases with

' -h- appear." generic phrases are underlined

, •roaghou. ,,._;.t; . i(n.aires Lo ai I chatnge.

Generic Phrase Replace With

'the ezpe- '-f .. ,. the expert system being tested

"•-:ert system's task" a descrjDtior of the function that the expert
system p-rfcrms

"the organization" the name of the organization that will use the
expert system

0

z z
- S - = , -u

caa

3-,,

0 ch

LU L

z a<

0b1 cc X

0I.-

WL

* ~U. 0o ~ O0,

I (W C
0j 3:R iLzcI0 :

W- 1 E.

> ZL LU U
LZC LU ixJ t(ftCJtfl

zU -

w0 :g zz

w_ CL U-
-J 0 JwW U 3 L xJC

0 Lm :E

z. vi acU-c-
0i zLz. :~ .s ,nO U0c

SL z

_j L >-U

Narn: Date:

Time Started this Questionnaire:

Time Finished this Questionnaire:

Sequence:

QUESTIONNAIRE

The purpose of this questionnaire is to obtain your perceptions concerning the valic of the expvrt

system in performing the exTert system's task for which the system has thus far been developed. A

number of statements are made and each is followed by an 11-point scale on which you are to indica:e

the extent to which you agree or disagree with the statement. Please simply mark an X at the

appropriate point on the scale. If you cannot answer a question, put an asterisk(*) in the right-hand

margin beside the question. If you would like to comment about your answer, pla,,c do so in the space

provided to the right of the que:,tion. Comments are helpful, but they are not required.

There are 50 questions in the questionnaire. We have to ask you so many questions in order to get a

complete and accurate picture of your perceptions concerning the strengths, weaknesses, and potential

value of the expert system. You should be able to complete the questionnaire within 15 to 30 minutes.

but please take as much time as you need to carefully and accurately respond to each question.

1. 1 have a lot of confidence in the expert system.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

2. Using the expert system will significantly decrease the workload required by personnel performing

Comments
Vetv Neither Very
Strongly Disagrte stlogly
Disagree Nor Agree C.c,.

0 1 2 3 4 5 6 7 8 9 10

-1

3. The expert system's task can be performed faster using the ex pert sytem. /

(Ci mments

Very Nel,". Very
Strongly "", cc Strongly
Disagree .,.C Agree Agree

0 1 2 .3 4 5 6 7 8 9 10

4. The expert svstem_'s input displays are acceptable.

Commcnts
Very Neither Very
Strongly t)isagrte Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10 °1
5. In general, I am pleased with the expert system's overall level of performance.

Comments
Very Neither Very
Strongty Disagree Strongly
Disagree Nor Agree Agree

C 1 2 3 4 5 6 7 8 9 10

On the average, the expert system nicely matches the background and skills of the organization's
personnel performing the expert system's task.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

-2-

7. The expert sstem will disrupt communication or the flow of data among personnel performing
the exp•rt system's task.

Comments
Very Neither Very
Strongly Disagree Stronigly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

8. In general, the expert snstem's overall usability is good.

Comments
Very Neither Very
Strongty Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 9 9 10

9. The exert system would have an unacceptable impact on organizational structure and
procedures.

AAC.ments
Ver

Alrongv Itrgo.,e trngty
"7)tsagree .r re r

0 t 3 I 5 6 7 8 ' 1o

It). The expert system ignores situations, data, or predictions that are important when performing the
expert system's task.

Comments
Very Neither VeryStrongly Disa4gree Strongly

Disagree Nor Agree Agree

0 1 2 a 4 5 6 7 8 9 10

-3-

11. The expert system matches the work style, workload, skills, and training of the people who will
use i t. P

Comments
Very Neither Very
Strongly Disagree Strongly
Dtsagree Nor Agree Agree

o 1 2 3 4 5 6 7 8 9 10

12. 1 think the expert system's overall level of performance is unaccep'able.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

13. It would be difficult to train personnel to use the expert system effectively.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

14. 1 could produce higher quality results working with the expert system than without it.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

-4-

* 15. 1 do not fully understand how the expert system works.

S.. C')mments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agr-

0 1 2 3 4 S 6 7 8 9 10

16. In general, the time between my input and the system's response is fast and quite acceptable.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

17. The expert system's built-in expertise is worthless for the organization's personnel performing the
expert system's task.

Comments
Very Neither Very

Si, D)i.2ree Strong•l

19.~ ~ ~- 4S epvfi ro

C *

18. [be expcvg stcijk's input and output dis -,s aic not very good.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 34 5 6 7 8 9 10

-5.

19. The presentation of the expert s'Ltem's reasoning process is adequate.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagrme Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

20. 1 find the expert system difficult to use.

Comments

Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

21. The expert system does not split the tasks between the machine and the user appropriately.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

22. 1 find the expert sstem's results acceptable.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

-6-

23. The _xert svtem uses an objectionable scheme for representing and accessing knowledge.

Comments
Very Neither VWry
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

24. The expert system's output displays are acceptable.

Comments
Very Neither Very
Strongly Disagree Stromngy
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

25. The use of the expert system will slow down the .eert system's task.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

o ' -5 ---7 . -. - -- ' . -, -- 7 8 9 F0

26. Regardless of whether the cKpert system pcrfoms well or not, I do not like using it.

,Comments
Very Neither Very
'frongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

.7

27. The expert system does nof match the knowledge of personnel performing the expert system's
task.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

o 1 2 3 4 5 6 7 8 9 10

28. The problem-solving logic used by the expert system is transparent to the user.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

29. The expert system fails to give high-quality answers.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

30. Theexert system has been designed so that the operator and the system are doing the tasks for
which they are best suited.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

-8-

S 31. The xpert system's interface with the user is very good.

Comment-
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

32. The expert system has a broad enough scope of application to be useful in performing the expert
system's task.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

o 1 Z 3 4 5 6 7 8 9 10

33. The expert system will increase the amount of work required to perform the expert system's task.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree AgI

o 1 2 3 4 5 6 7 8 9 10

34. The expert system would improve communication.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

-9-

35. The expert s•stem will adversely impact the work style, workload, skills, or training of those
personnel it was designed to support.

Comments
Very Neither Very
Strongly Disagree Strongly
Diugree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 to

36. Once I have completed training and gained familiarity with the system, I can easily and effectively
use it.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

o 1 2 3 4 5 6 7 8 9 10

37. The mechanics of using the expert 5ystem causes problems in data entry.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

38. 1 think that the expert system gives high-quality justifications for its answers.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

-10-

39. expert system is well-matched to the organizational structure and characteristits of the
oreanization.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

o 1 Z 3 4 5 6 7 8 9 10

40. After using the expert system I find its results to be unacceptable.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

41. The use of the expert system would reduce the amount of time required to train new staff
members to perform the expert system's task.

COmments
Very. •Jelhcr Verv
.n;nnmeW Oisegref. Strongly

,)tsegree N!'or Agrr-A~r_.

I - Y*5 7 8 9 .0

42. The expert system does not help the operator understand how different characteristics of the
situation might result in different outputs.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

-11-

43. 1 am apprehensive in taking actions bascd on the expert system.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 P 9 10

44. Once I have completed training and gained familiarity with the expert system, I can easily and
effectively use it without consulting the documentation or members of the development team.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree A&e

0 1 2 3 4 5 6 7 8 9 10

45. The words and phrases used in the expert sMstem are appropriate.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 I 2 3 4 5 6 7 8 9 10

46. 1 have to wait too long for the expert system to rcspond to my inputs.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

-12-

. 47. The expert system's graphic displays and tables, and hardcopy capabilities for printing displays,
are unacceptable.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

48. The scheme used by the expert System to represent knowledge is acceptable.

Comments
Very Neither Very
Strongly Disagree Strongly
Disagree Nor Agree Agree

0 1 2 3 4 5 6 7 8 9 10

49. When I consider, in total, (1) the expert system's response time, (2) the amount of time to
accomplish the task with the expert system, (3) the quality of the expert system's answers, and (4)
the quality of its reasons, I think the expert system is generally performing well.

Commt nents
Very NW tier Very
Strongly D,)Laree gý.
D;Sagrec No "~r~ Ag

0 1 2 3 4 5 6 7 8 9 10

50. The exert system scores well on overall usability, which includes its user interface, its match with
users' background, and its match with the organization's procedures and operations.

Comments
"Very Neither Very
Strongly Disagree Strongly
Disagree Nor agree Agree

0 1 2 3 4 5 6 7 8 9 10

Name: Date:

Time Started this Questionnaire:

Time Finished this Questionnaire:

Sequence:

INSTRUCTIONS FOR SCORING THE EXPERT SYSTEM ON THE EVALUATION CRITERIA

We need your assistance in evaluating (or *scoring") the expert system on the following critcria, which

are bold and in capital letters, that might be considered judgmental in nature:

1. The adequacy of the system's Response Time Performance, in terms of the amount of
time the expert system takes to respond to the operator's inputs and provide outputs.

2. The system's Performance with respect to the overall Time to Accomplish the exprt
system's Task.

3. Quality of the expert system's Answers.

4. Quality of Reasons given for answers.

5. Your Confidence in taking actions based on using the expert system.

6. How Easy it is To Use the exnert system after you had been completely trained and
familiar with the system.

7. Acceptability of the Person-Machine Interaction Process, in terms of the different tasks
assigned to the operator and to the system.

8. Acceptability of the exMrt system's task Results.

9. Acceptability of the system's Scheme for Representing Knowledge.

10. Acceptability of the expert system's Scope of Application for the expert system's task.

11. Acceptability of the system's Presentation (or Trace) for Explaining the Reasons for its
answers.

13. Acceptability of the system's Impact on the Work Style, Workload, Skills, and Training
of personnel performing the expert system's task.

14. Acceptability of the system's Impact on Organizational Procedures and Structures of the
orgyal-i Zd i AM

15 4eeeptahitity of thc .cyPt system s rput-Outtput Capabilities-that is, all the system's
displays except those tracing the reasoning process.

Feel free to refer back to these definitions when completing the queslionnaire.

4-1

We would like you to use the following "0 to 100" scale to score the exert system on each evaluation
criterion:

100 Greatly Exceeds Performance Expectations

90

80

70

60

50 Fully Meets Performance Expectations

40

30

20

10

0 Fails to Meet Performance Expectations

The "50' point means that the expert system fully meets your performance expectations for the system

on the evaluation critcriun being considere' 7-.,,f ",V means the system fails to meet your performance

expectations. The '100" means the system not only fully meets your performance expectations, but

greatly exceeds them.

More generally, scores below "50' mean that, in your judgment, the expert sy§tem is in some fashion

deficient on the criterion; scores above "SO" mean that you think the exert system is providing added

value on the criterion. The scale permits you to numerically score the level of deficiency or the level of

added value. For example, let's consider evaluating the system on Response Time. If the expert System

meets your performance expectations for an acceptable waiting period between your inputs and the

system's response to them, you would give it a score of "50." Let's assume that you consider the expert

system's response time deficient (i.e., less than '50"), but not a complete failure (i.e., greater than !0").

Then, the question is, *What is its numerical level of deficiency between 0 and 50?' If the deficiency is

very, very minor in your mind, then the score would be close to 50 (e.g., greater than or equal to 45,

but Jess than 50). On the other hand, if the deficiency is very, very great, but still not "0,4 then the

score would be close to 0 (e.g., less than or equal to 5, but greater than 0). If you think the level of

deficiency is about halfway between meeting the expectation and failing it, you would give the system a

score of 25; if it is a quarter-of-the-way, you would score it 12.5, and so forth In short, you iman use the

bottom-half of the scale to numerically specify the expert system's level of deficiency on the evaluation

criterion. In addition, of course, we need to know the reason(s) for your score; consequently, we will

provide you with space to tell us.

-2-

* In a similar fashion, you can use the scale between "50" and '100" to numerically specy the level of

"*added value* performance on the criterion. For example, if you think theexprt system barely exceeds

your performance expectations for Response Time, then it would receive a score slightly above "50.' If

't considerably exceeds your performance expectations but is not a "100,* the expert system might receive

an "85," '90, "95," etc. If the degree of added value benefit provided by the expert system is about

halfway between meeting your performance expectations and greatly exceeding it, then you would score

it "75." If the added-value benefit is a quarter-of-the-way, you would give it a score of "62.5;" if it is

three-quarters, you would score it "87.5," and so forth. Again, it is important to tell us why the expert

system is providing added-value on the criterion; that is, give us the reasons for your score.

The pages that follow provide scoring sheets for evaluating the expert sytem on each criterion. Please

think carefully about each score, and the reasons for it. One way to help you do this is for you to first

carefully think about your performance expectations for the system on the criterion. What level of

performance do you consider acceptable (i.e., a score of "50")? We have given you room co write your

performance expectations on the scoring sheet. We have also given you an opportunity to indicate (a)

whether you have previously expressed performance expectations for the criterion, and (b) whether you

have heard anyone else express performance expectations. Then, provide a numerical score, and the

O reasons for it, in the space provided. If you can not (or do not want to) score the exSert system on a

particular criterion, please write "no response' in the space provided.

-3-

1. RESPONSE TIME PERFORMANCE

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle *yes' or
"no.*)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No 0

* WHAT ARE YOUR IOERFORMANCE EXPECTATIONS?

* NUMERICAL SCORE:

* REASONS FOR SCORE:

0

2. PERFORMANCE REGARDING TIME TO ACCOMPLISIH TASK

100 - Greatly Exceeds Performance Expelcations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20

0 F, .o Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes" or
41nO*.)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

' WHAT ARE YOUR PERFORM.AkNCZ, EXPECTATIONS?

NUMERitJIL SC(7'

* REASONS FOR SCORE:

-5

3. QUALITY OF ANSWERS

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes* or
".no*.)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

* WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

* NUMERICAL SCORE:

* REASONS FOR SCORE:

-6-

4. QUALUTY OF REASONS

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle Ryes" or
"no,.)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

* WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

* NUMERICAL SCORE:

* REASONS FOR SCORE:

-O

S. YOUR CONFIDENCE

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle 'yes' or
"no".)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

* WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

* NUMERICAL SCORE:

* REASONS FOR SCORE:

0

• . i i i l -I -

6. EASE OF USE

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle 'yes* or
*no'.)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

* Wi-HAT ARE YOUR ?!f.FORMANCE EXPECTATIONS?

* NUMERICAL SCORE:

* REASONS FOR SCORE:

-9-

7. ACCEPTABILITY OF THE PERSON-MACHINE INTERACTION PROCFSS
(In terms of the different tasks assigned to the operator and to the system)

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes* or
"no'.)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

* WHAT ARE YOUR PERFORMANCE EXPECrATIONS?

* NUMERICAL SCORE:

REASONS FOR SCORE:

-10-

8& ACCEPTABILITY OF RESULTS

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

0 Have you previously expressed performance expectations for this criterion? (Circle 'yes" or
"no'.)

Yes No

* Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

0 WHAT ARE YOUR P .RFORMANCF EXPECFATIONS?

* NUMERICAL SCORE:

a REASONS FOR SCORE:

-ii-

9. ACCEPTABILITY OF SCHEME FOR REPRESENTING KNOWLEDGE

100 - Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes" or
"no*.)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

* NUMERICAL SCORE:

* REASONS FOR SCORE:

-12-

10. SCOPE OF APPLICATION

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10
0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes" or
"no".)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

* ',\ HAT ARE ','01 JR 17T-P FO, RMANCE EXPECT'ATIONS?

• NUMERICAL SCORE:

* REASONS FOR SCORE:

-13-

It. ADEQUACY OF PRESENTATION/TRACE FOR EXPLAINING REASONS

100 - Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes' or
1no".)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please

comment.
Yes Nok 0

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

* NUMERICAL SCORE:

* REASONS FOR SCORE:

-14-

12. TRANSPARENCY OF THE EXPERT SYSTEM

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle "yes" or
"now.)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

HVHAT ARF YOUR PFRFORMANCE EXPECTATIONS?

NUMERICAL SCORE:

REASONS FOR SCORE:

-15-

13. ACCEPTABILITY OF IMPACT ON OPERATOR'S WORK STYLF, WORKLOAD, SKILLS, AND TRAINING

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle 'yes' or
"no".)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

* NUMERICAL SCORE:

* REASONS FOR SCORE:

-16-

. 14. ACCEPTABILITY OF IMPACT ON ORGANIZATIONAL PROCEDURE-S AND STRUCTURFS

100 - Greatly Exceeds Performance Expectations
90
80
70

60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle 'yes' or
"no".)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yres No

"\i-IATT 'TF YOUR PTFr)RM.%NCF EXPEC.TATTONS?

* NUMERICAL SCORE:

REASONS FOR SCORE:

-17-

15. ACCEPTABILITY OF INPUT-OUTPUT CAPABILITIES

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle 'yes' or
"nOw.)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

* WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

* NUMERICAL SCORE:

* REASONS FOR SC(IE:

6
- I8-

Now we would like you to evaluate the expert system's Overal Perfo-mtnce. When doing so, please

consider the e!xert system's performance on the following four criteria zaken together.

* Response Time Performance

0 Time to Accomplish the Task

V Quality of the Expert System's Answers

0 Quality of the Expert System's Reasons.

Now please turn the page and score the expert stem on its Overall Performance. Feel free to look

back at your previous scres on the four criteria listed above before scoring the exVert system on

Overall Performance.

-19-

,i ll i~i, I I IIl I I l I I I I l I MEMNONI

16. OVERALL PERFORMANCE

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40
30
20
10

0 Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle 4yes' or
no.)

Yes No

i Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

* WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

* NUMERICAL SCORE:

* REASONS FOR SCORE:

-20-

. Now we would like you to evaluate the expert system on its overall U!*bility. When doing so, please

consider the expert sMstem's performance on the fo!ourg eleven crite'"a !aken together:

0 Your Confidence in the gxcpert System

* The Expert System's Ease of Use

* Acceptability of its Person-Machine Interaction Process

0 Acceptability of its Results

Acceptability of the Expert System's Scheme for Representing Knowledge

* The Expert System's Scope of Application

0 Adequacy of PresentationiTrace for Explaining Reasons

* Transparency of the Expert SsteLm

* Acceptability of its Impact on Operator's Work Style, Workload, Skills, and Training

"* Acceptability of its Impact on Organizational Procedures and Structures

"* Acceptability of the Expert System's Input-Output Capabilities.

0Now please turn the page and score the ert sstem on its Overall Usability. Feel free to look back

at your previous scores on the eleven criteria listed above before scoring the expen system on Overall

Usability.

-21-

17. OVERALL USABILITY

100 Greatly Exceeds Performance Expectations
90
80
70
60
50 Fully Meets Performance Expectations
40 --
30 --
20 --
10

0 - - Fails to Meet Performance Expectations

Have you previously expressed performance expectations for this criterion? (Circle 'yes" or
w*no".)

Yes No

Have you previously heard anyone else express performance expectations? If yes, please
comment.

Yes No

* WHAT ARE YOUR PERFORMANCE EXPECTATIONS?

* NUMERICAL SCORE:

* REASONS FOR SCORE:

-22-

